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We study the chromatic polynomials (= zero-temperature antiferromagnetic
Potts-model partition functions) PG(q) for m×n rectangular subsets of the
square lattice, with m [ 8 (free or periodic transverse boundary conditions) and
n arbitrary (free longitudinal boundary conditions), using a transfer matrix in
the Fortuin–Kasteleyn representation. In particular, we extract the limiting
curves of partition-function zeros when nQ., which arise from the crossing in
modulus of dominant eigenvalues (Beraha–Kahane–Weiss theorem). We also
provide evidence that the Beraha numbers B2, B3, B4, B5 are limiting points of
partition-function zeros as nQ. whenever the strip width m is \ 7 (periodic
transverse b.c.) or \ 8 (free transverse b.c.). Along the way, we prove that a
noninteger Beraha number (except perhaps B10) cannot be a chromatic root of
any graph.
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1. INTRODUCTION

The Potts model (1–3) plays an important role in the general theory of critical
phenomena, especially in two dimensions, (4–6), and has applications to
various condensed-matter systems. (2) Ferromagnetic Potts models have
been extensively studied over the last two decades, and much is known



about their phase diagrams (2, 3) and critical exponents. (5–7) But for anti-
ferromagnetic Potts models, many basic questions remain open: Is there a
phase transition at finite temperature, and if so, of what order? What is the
nature of the low-temperature phase(s)? If there is a critical point, what are
the critical exponents and the universality classes? The answers to these
questions are expected to be highly lattice-dependent, in sharp contrast to
the universality typically enjoyed by ferromagnets.

According to the Yang-Lee picture of phase transitions, (8) information
about the possible loci of phase transitions can be obtained by investigating
the zeros of the partition function when one or more physical parameters
(e.g. temperature or magnetic field) are allowed to take complex values. For
the Potts model on a finite graph G, the partition function ZG(q, v) depends
on the number q of Potts states and on the temperature-like variable
v=ebJ−1. The Fortuin–Kasteleyn representation (9, 10) shows that ZG(q, v)
is a polynomial in q and v (see Section 2.1), so it makes sense for either or
both of these variables to be made complex. In particular, the chromatic
polynomial PG(q)=ZG(q, −1) corresponds to the zero-temperature limit
of the antiferromagnetic Potts model (J=−., v=−1).

Many investigations of the zeros of Potts partition functions in the
complex q- and/or v-plane have been performed in the last few years,
notably by Shrock and collaborators. (11–35) The best results concern families
Gn of graphs for which the partition function can be expressed via a trans-
fer matrix T of fixed size M×M:

ZGn
(q, v)=tr[A(q, v) T(q, v)n] (1.1a)

=C
M

k=1
ak(q, v) lk(q, v)n, (1.1b)

where the transfer matrix T(q, v) and the boundary-condition matrix
A(q, v) are polynomials in q and v, so that the eigenvalues {lk} of T and
the amplitudes {ak} are algebraic functions of q and v. It then follows,
using a theorem of Beraha–Kahane–Weiss, (36–40) that the zeros of ZGn

(q, v)
accumulate along the curves B where T has two or more dominant eigen-
values (i.e. eigenvalues of maximum modulus), as well as at the isolated
points where T has a single dominant eigenvalue lk whose corresponding
amplitude ak vanishes. See Section 2.2 for more details.

For ferromagnetic Potts models on the square, triangular and
hexagonal lattices, the exact critical curves vc(q) in the real (q, v)-plane
have long been known. (4) For antiferromagnetic Potts models, by contrast,
there are some tantalizing conjectures concerning the critical loci, but many
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aspects remain obscure.3 The two best-understood cases appear to be the

3 For a more detailed review, see ref. 41, Section 1.

square and triangular lattices:

Square lattice. Baxter (4, 42) has determined the exact free energy
(among other quantities) for the square-lattice Potts model on two special
curves in the (q, v)-plane:

v=±`q (1.2)

v=−2±`4−q (1.3)

Curve (1.2+) is known to correspond to the ferromagnetic critical point,
and Baxter (42) conjectured that curve (1.3+) corresponds to the antiferro-
magnetic critical point. For q=2 this gives the known exact value; (43) for
q=3 it predicts a zero-temperature critical point (vc=−1), in accordance
with strong analytical and numerical evidence; (44–51) and for q > 3 it predicts
that the putative critical point lies in the unphysical region (v < −1 or v
complex), so that the entire physical region −1 [ v [ 0 lies in the
disordered phase, in agreement with numerical evidence for q=4. (50) For
some interesting further speculations, see Saleur. (52, 53)

Triangular lattice. Baxter and collaborators (54–56) have determined
the exact free energy (among other quantities) for the triangular-lattice
Potts model on two special curves in the (q, v)-plane:

v3+3v2−q=0 (1.4)

v=−1 (1.5)

The uppermost branch (v \ 0) of curve (1.4) is known to correspond to the
ferromagnetic critical point; (54, 4) and Baxter (55) initially conjectured (follow-
ing a hint of Nienhuis (57)) that (1.5)—which is the zero-temperature anti-
ferromagnetic model, hence the chromatic polynomial—corresponds in the
interval 0 [ q [ 4 to the antiferromagnetic critical point. This prediction of
a zero-temperature critical point is known to be correct for q=2 (58–60) and
is believed to be correct also for q=4. (61–63) On the other hand, for q=3
this prediction contradicts the rigorous result, (64) based on Pirogov–Sinai
theory, that there is a low-temperature phase with long-range order and
small correlation length.4 For the model (1.5), Baxter (55) computed three

4 A Monte Carlo study of the q=3 model found strong evidence for a first-order transition to
an ordered phase at bJ % −1.594. (65)

different expressions li(q) [i=1, 2, 3] that he argued correspond to the
dominant eigenvalues of the transfer matrix in different regions Di of the

Transfer Matrices and Partition-Function Zeros 611



complex q-plane; in a second paper (56) he provided corrected estimates for
the precise locations of D1, D2, D3. Unfortunately, no analogous analytic
prediction is available for the chromatic polynomials of other two-dimen-
sional lattices.

One way to test the conjecture that (1.3+) is a critical curve for the
square-lattice Potts model is to compute the partition function Zm×n(q, v)
for m×n strips of the square lattice, investigate its zero variety in the
complex (q, v)-space, and test whether the zeros of Zm×n(q, v) appear to be
converging to (1.3+) as m, nQ.. Here we shall carry out this program for
the zero-temperature antiferromagnetic model (v=−1).5 Using a transfer

5 In future work (66) we plan to extend this analysis to the antiferromagnetic model at nonzero
temperature (−1 < v < 0). See also ref. 30.

matrix in the Fortuin–Kasteleyn representation, (67) we shall compute the
chromatic polynomials Pm×n(q) for m×n square-lattice strips of width
m [ 8 (free or periodic transverse boundary conditions) and arbitrary
length n (free longitudinal boundary conditions). In particular, we shall
extract the limiting curves B of partition-function zeros when nQ.,
which arise from the crossing in modulus of dominant eigenvalues in
accordance with the Beraha–Kahane–Weiss theorem.6 Finally, we shall

6 Here we follow in the footsteps of Shrock and collaborators, (17, 19, 32) who have been carrying
out this program using a generating-function approach that is equivalent to transfer matri-
ces; they determine the recurrence relations by repeated use of the deletion-contraction iden-
tity. In particular, Shrock et al. have computed the transfer matrices for square-lattice strips
of width m [ 5F and m [ 6P (leading to matrices of size up to 7×7), and have computed the
limiting curves B of partition-function zeros for m [ 4F and m [ 5P. [Here the subscript F
(resp. P) denotes free (resp. periodic) boundary conditions.] By explicit use of transfer
matrices, we are able to automate the former calculation and handle much larger transfer
matrices (here up to 127×127); and using the resultant method (Section 4.1.1) we are able to
detect small gaps and other fine details in the limiting curves.

attempt to understand the behavior of these limiting curves as mQ.. Of
course, there is little doubt in this case that they will converge to the critical
point of the zero-temperature model, qc=3; but it is illuminating to see
this convergence explicitly and to view the critical point qc=3 as simply
one (real) point on a complex critical curve. Not surprisingly, we find for
this critical curve a shape that is qualitatively similar to that found by
Baxter (56) for the triangular lattice, with the zero-temperature critical point
lying now at qc=3 rather than qc=4.

A special role in the theory of chromatic polynomials appears to be
played by the Beraha numbers Bn=4 cos2(p/n) [see Table 1 for the first
few Bn]. As we shall show in Section 2.3, a noninteger Beraha number
(except possibly B10) cannot be a chromatic root of any graph. Neverthe-
less, Beraha (68) observed that planar graphs frequently have chromatic roots
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very near one or more of the Bn.7 Indeed, Beraha, Kahane and Weiss (38, 39)

7 For B5 this was observed earlier by Berman and Tutte. (69)

found families of planar graphs that have chromatic roots converging to B5,
B7 or B10.8

8 The graphs in question are 4P×nF, 5P×nF and 2F×nP strips of the triangular lattice (with an
extra vertex adjoined at top and bottom in the first two cases). In the case of B5 and B7, Beraha,
Kahane and Weiss (39) proved that there are in fact real chromatic roots converging to them.

Here we shall provide additional curious evidence in favor of the idea
that chromatic roots tend to accumulate at the Beraha numbers. We find
empirically (at least for m [ 8) that on a square-lattice strip of width m with
either free or periodic transverse b.c., there is at least one vanishing amplitude
ai(q) at each of the firstm Beraha numbers B2, ..., Bm+1 (but not higher ones).
Assuming that this behavior persists for all m, in the limit mQ. all the
Beraha numbers will be zeros of some amplitude. Moreover, in all the cases
except m=7, 8 with free transverse b.c. (where our computer power gave
out) and m=8 with periodic transverse b.c. (see Section 7.2 for a discussion
on this point), we verified that the vanishing amplitude corresponds to the
eigenvalue obtained by analytic continuation in q from the one that is domi-
nant at small real q (e.g. at q=1), in agreement with a conjecture of Baxter
(ref. 56, p. 5255). Thus, the first few Beraha numbers—namely, those (up to
at most Bm+1) that lie below the point q0(m) where the dominant-eigenvalue-
crossing locus B intersects the real axis—correspond to the vanishing of a
dominant amplitude and hence (via the Beraha–Kahane–Weiss theorem) to a
limit point of chromatic roots, while the remaining Beraha numbers do not.
As the strip width m grows, this crossing point q0(m) increases and presum-
ably tends to a limiting value q0(.); for the square lattice, we expect q0(.)
to lie somewhere around 2.9, i.e. strictly between B5 and B6.* Therefore,

* Note added in proof. See ref. 87 concerning the possibility that q0(.)=3.

for all sufficiently large strip widths, we expect the Beraha numbers
B2, B3, B4, B5—but not higher ones—to be limiting points of chromatic roots.
Our data confirm (at least up to m=8) that B2, B3, B4 are limiting points of
zeros for all widths m \ 4, and that B5 is a limiting point of zeros for all
widths m \ 7 (cylindrical b.c.) or m \ 8 (free b.c.). This scenario for the
accumulation of chromatic roots at some of the Beraha numbers was set forth
by Baxter (56) and elaborated by Saleur. (52) For further speculations on the
special role of the Beraha numbers in the Potts model, and especially for the
chromatic polynomials of planar graphs, see refs. 69–75, 56, 76–78, 52, 53,
79–86.

The plan of this paper is as follows: In Section 2 we review the
Fortuin–Kasteleyn representation, the Beraha–Kahane–Weiss theorem,
and some algebraic number theory related to theBeraha numbers. In Section 3
we explain how to construct transfer matrices for the Potts model
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in the spin representation and in the Fortuin–Kasteleyn representation, and
we compute the dimensions of these transfer matrices. In Section 4 we
discuss the general properties of the dominant-eigenvalue-crossing curves B
and the isolated limiting points of zeros. In Sections 5 and 6 we present our
numerical results for square-lattice strips with free and cylindrical bound-
ary conditions. In Section 7 we analyze the theoretical import of our cal-
culations, and discuss prospects for future work. (87–89, 66)

2. PRELIMINARIES

In Sections 2.1 and 2.2 we review some well-known facts about the
Fortuin–Kasteleyn representation and the Beraha–Kahane–Weiss theorem,
which will play a fundamental role in the remainder of the paper. We also
use these sections to set the notation. In Section 2.3 we discuss some alge-
braic number theory related to the Beraha numbers; this section contains a
few new results, notably Corollary 2.4.

2.1. Fortuin–Kasteleyn Representation of the Potts Model

Let G=(V, E) be a finite undirected graph with vertex set V and edge
set E, let {Je}e ¥ E be a set of couplings, and let q be a positive integer. Then
the q-state Potts model on G with couplings {Je} is, by definition, the
canonical ensemble at inverse temperature b for a model of spins {sx}x ¥ V

taking values in the set {1, 2, ..., q}, interacting via a Hamiltonian

H({s})=− C
e=OxyP ¥ E

Jed(sx, sy) (2.1)

where d is the Kronecker delta. The partition function is thus

ZG(q, {ve})=C
{s}

D
e=OxyP ¥ E

[1+ved(sx, sy)], (2.2)

where we have written

ve=ebJe−1. (2.3)

A coupling Je (or ve) is called ferromagnetic if Je \ 0 (ve \ 0) and anti-
ferromagnetic if −. [ Je [ 0 (−1 [ ve [ 0). The q-coloring problem, in
which adjacent spins are required to take different values, corresponds to
the zero-temperature limit of the antiferromagnetic Potts model (namely
Je=−., ve=−1).
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In fact, ZG(q, {ve}) is the restriction to positive integers q of a poly-
nomial in q and {ve} (with coefficients that are in fact 0 or 1). To see this,
expand out the product over e ¥ E in (2.2), and let EŒ ı E be the set of
edges for which the term ved(sx, sy) is taken. Now perform the sum over
configurations {s}: in each connected component of the subgraph (V, EŒ)
the spin value sx must be constant, and there are no other constraints.
Therefore,

ZG(q, {ve})= C
EŒ ı E

qk(EŒ) D
e ¥ EŒ

ve, (2.4)

where k(EŒ) is the number of connected components (including isolated
vertices) in the subgraph (V, EŒ). The expansion (2.4) was discovered
by Birkhoff (90) and Whitney (91) for the special case ve=−1 (see also
Tutte (92, 93)); in its general form it is due to Fortuin and Kasteleyn (9, 10) (see
also ref. 94). We shall henceforth take (2.4) as the definition of ZG(q, {ve})
for arbitrary complex numbers q and {ve}. When ve takes the same value v
for all edges e, we write ZG(q, v). When ve=−1 for all edges e, this defines
the chromatic polynomial PG(q). Note that the chromatic polynomial PG(q)
of any loopless graph G is a monic polynomial in q with integer coeffi-
cients.10 See refs. 95 and 96 for excellent reviews on chromatic polynomials,

10 A loop, in graph-theoretic terminology, is an edge connecting a vertex to itself. Obviously, if
G has a loop, then its chromatic polynomial is identically zero.

and ref. 97 for an extensive bibliography.

2.2. Beraha–Kahane–Weiss Theorem

A central role in our work is played by a theorem on analytic func-
tions due to Beraha, Kahane and Weiss (36–39) and generalized slightly by one
of us. (40) The situation is as follows: Let D be a domain (connected open
set) in the complex plane, and let a1, ..., aM, l1, ..., lM (M \ 2) be analytic
functions on D, none of which is identically zero. For each integer n \ 0,
define

fn(z)=C
M

k=1
ak(z) lk(z)n. (2.5)

We are interested in the zero sets

Z(fn)={z ¥ D : fn(z)=0} (2.6)
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and in particular in their limit sets as nQ.:

lim inf Z(fn)={z ¥ D : every neighborhood U ¦ z has a nonempty

intersection with all but finitely many of the sets Z(fn)}
(2.7)

lim supZ(fn)={z ¥ D:every neighborhood U ¦ z has a nonempty

intersection with infinitely many of the sets Z(fn)} (2.8)

Let us call an index k dominant at z if |lk(z)| \ |ll(z)| for all l (1 [ l [M);
and let us write

Dk={z ¥ D : k is dominant at z}. (2.9)

Then the limiting zero sets can be completely characterized as follows:

Theorem 2.10.(36–40) Let D be a domain in C, and let a1, ..., aM,
l1, ..., lM (M \ 2) be analytic functions on D, none of which is identically
zero. Let us further assume a ‘‘no-degenerate-dominance’’ condition: there
do not exist indices k ] kŒ such that lk — wlkŒ for some constant w with
|w|=1 and such that Dk (=DkŒ) has nonempty interior. For each integer
n \ 0, define fn by

fn(z)=C
M

k=1
ak(z) lk(z)n.

Then lim inf Z(fn)=lim sup Z(fn), and a point z lies in this set if and
only if either

(a) There is a unique dominant index k at z, and ak(z)=0; or
(b) There are two or more dominant indices at z.

Note that case (a) consists of isolated points in D, while case (b)
consists of curves (plus possibly isolated points where all the lk vanish
simultaneously). Beraha–Kahane–Weiss considered the special case of
Theorem 2.1 in which the fn are polynomials satisfying a linear finite-order
recurrence relation, and they assumed a slightly stronger nondegeneracy
condition. (Their theorem is all we really need in this paper.) Henceforth
we shall denote by B the locus of points satisfying condition (b).

In the applications considered in this paper, the functions fn will be of
the form fn(z)=tr[A(z) T(z)n] where the M×M matrices T(z) and A(z)
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are polynomials in z; therefore, the functions lk(z) [which are the eigen-
values of T(z)] and ak(z) will be algebraic functions of z, i.e. locally analy-
tic except at isolated branch points. So one can cover the complex plane
minus branch points by a family of simply connected domains D, and then
apply Theorem 2.1 separately to each such domain D. The branch points
are not covered by this analysis, but they will always be endpoints of curves
of type (b), hence also limit points of zeros.

It is interesting to ask about the rate at which the zeros of fn converge
to the limit set. In case (a), it is easy to see that the convergence is expo-
nentially fast. In case (b), simple expansions suggest that the rate is 1/n
near regular points of the curve B, and 1/n2 at branch points (see Sections
4.2.1 and 4.2.2).

In checking for isolated limiting points of zeros [case (a)], the follow-
ing result will be useful (see Section 4.3):

Lemma 2.2.(39) Suppose that fn=;M
k=1 akl

n
k, and define

D=R
f0 f1 · · · fM−1

f1 f2 · · · fM

x x x

fM−1 fM · · · f2M−2

S . (2.10)

Then

det D=D
M

k=1
ak D

1 [ i < j [ M
(lj−li)2. (2.11)

Proof. It is not difficult to see that D=LT diag(a1, ..., aM) L where
L is the M×M Vandermonde matrix Lij=l

j−1
i . Lemma 2.2 then follows

from the well-known formula

det L= D
1 [ i < j [ M

(lj−li) (2.12)

for the Vandermonde determinant. L

We remark that the product <i < j (lj−li)2 is the discriminant of the
characteristic polynomial of the transfer matrix: see (4.2) below.
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2.3. Beraha Numbers

We recall (98) that a complex number z is called an algebraic number
(resp. an algebraic integer) if it is a root of some monic polynomial with
rational (resp. integer) coefficients. Corresponding to any algebraic number
z, there is a unique monic polynomial p with rational coefficients, called
the minimal polynomial of z (over the rationals), with the property that p
divides every polynomial with rational coefficients having z as a root. (The
minimal polynomial of z has integer coefficients if and only if z is an alge-
braic integer.) Two algebraic numbers z and zŒ are called conjugate if they
have the same minimal polynomial. Conjugacy is obviously an equivalence
relation, and so divides the set of algebraic numbers into equivalence
classes.

Examples. 1. The numbers B5=(3+`5)/2 and Bg
5=(3−`5)/2

are conjugates, as they have the same minimal polynomial
p(x)=x2−3x+1.

2. The numbers 21/3, 21/3e2pi/3 and 21/3e4pi/3 are all conjugates, as they
have the same minimal polynomial p(x)=x3−2.

3. If z is a primitive n th root of unity, the minimal polynomial of z is
the cyclotomic polynomial

Fn(x)= D
1 [ k [ n

gcd(k, n)=1

(x−e2pki/n), (2.13)

where the product runs over all positive integers k [ n that are relatively
prime to n (see e.g. ref. 99, Section 3.7 for a proof). In particular, Fn is a
monic polynomial with integer coefficients, irreducible over the field of
rational numbers, of degree

deg Fn=j(n) (2.14)

where j(n) is the Euler totient function (i.e. the number of positive integers
k [ n that are relatively prime to n). Thus, all the primitive n th roots of
unity are mutually conjugate.

4. For n \ 2, let us define the generalized Beraha numbers

B (k)
n =4 cos2 kp

n
=2+2 cos

2pk
n
, (2.15)
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and let us call B (k)
n a primitive n th generalized Beraha number in case k is

relatively prime to n. Then the minimal polynomial of Bn (or of any primi-
tive B (k)

n ) is11

11 The proof of (2.16) requires some elementary Galois theory (ref. 99, Chapter 3, and ref.
100): Fix n \ 3 and z=e2pi/n, and let F be the extension field Q(z). The irreducibility of the
cyclotomic polynomial Fn implies that F has dimension j(n) over Q, and that its Galois
group G=Gal(F/Q) is the abelian group {sk}1 [ k [ n, gcd(k, n)=1 where sk(r)=r for r ¥Q and
sk(z)=zk. Now define c — 2 cos(2p/n)=z+z̄ ¥ R. By repeated application of the equation
z2−cz+1=0 it follows that Q(z)=Q(c) À zQ(c), so that F has dimension 2 over Q(c).
Therefore, Q(c) has dimension j(n)/2 over Q, so that the minimal polynomial P(x) of c
over Q has degree j(n)/2. Now, for every k that is relatively prime to n, let us define
ck=sk(c)=zk+z̄k; there are clearly j(n)/2 distinct such numbers ck (note that cn−k=ck).
And we have P(ck)=P(sk(c))=sk(P(c))=0 since sk is a field automorphism and P has
rational coefficients. It follows that P(x)=<1 [ k [ n/2, gcd(k, n)=1(x−ck). A trivial shift
xQ x−2 gives the same result for the B (k)

n =2+ck. We thank Dan Segal for explaining this
proof to us.

pn(x)= D
1 [ k [ n/2
gcd(k, n)=1

(x−B (k)
n ). (2.16)

In Table 1 we show the pn for 2 [ n [ 16. pn is a monic polynomial with
integer coefficients, irreducible over the field of rational numbers, of degree

deg pn=3
1 for n=2
j(n)/2 for n \ 3

(2.17)

Thus, all the primitive n th generalized Beraha numbers are mutually
conjugate.

The point of this digression into algebraic number theory is, of course,
that the chromatic polynomial PG(q) of any loopless graph G is a monic
polynomial with integer coefficients. Therefore, all the chromatic roots of
G are algebraic integers; and if z is a chromatic root of G, then so are all its
conjugates. We therefore have:

Proposition 2.3. (a) Suppose that z has a conjugate lying in one of
the intervals (−., 0), (0, 1) or (1, 32/27]. Then z is not a chromatic root
of any loopless graph.

(b) Suppose that z has a conjugate lying in the interval [5,.). Then z
is not a chromatic root of any loopless planar graph.

(c) Suppose that z has a conjugate lying in the interval (1, 2). Then z
is not a chromatic root of any plane near-triangulation.
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Table 1. Beraha Numbers Bn=4 cos2(p/n) and Their Minimal Polynomials pn(q)a

n Bn (exact) Bn (num) pn(q) Other B (k)
n

2 0 0 q

3 1 1 q−1

4 2 2 q−2

5 (3+`5)/2 2.6180339887 q2−3q+1 (3−`5)/2

6 3 3 q−3

7 3.2469796037 q3−5q2+6q−1 0.1980622642
1.5549581321

8 2+`2 3.4142135624 q2−4q+2 2−`2

9 3.5320888862 q3−6q2+9q−1 0.1206147584
2.3472963553

10 (5+`5)/2 3.6180339887 q2−5q+5 (5−`5)/2

11 3.6825070657 q5−9q4+28q3−35q2+15q−1 0.0810140528
0.6902785321
1.7153703235
2.8308300260

12 2+`3 3.7320508076 q2−4q+1 2−`3

13 3.7709120513 q6−11q5+45q4−84q3+70q2 0.0581163651
−21q+1 0.5029785037

1.2907902259
2.2410733605
3.1361294935

14 3.8019377358 q3−7q2+14q−7 0.7530203963
2.4450418679

15 (9+`5+`30−6`5 )/4 3.8270909153 q4−9q3+26q2−24q+1 0.0437047985
1.7909430735
3.3382612127

16 2+`2+`2 3.8477590650 q4−8q3+20q2−16q+2 0.1522409350
1.2346331353
2.7653668647

a For each n we give the exact expression of the Beraha number Bn whenever it can be
expressed in terms of square roots alone; its numerical value to 10 decimal places; the unique
irreducible monic polynomial pn(q) with integer coefficients having Bn as a root; and the
other zeros of pn(q), which are the generalized Beraha numbers B (k)

n =4 cos2(kp/n) with k
relatively prime to n.
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(d) Suppose that z has a conjugate lying in the interval
(2, 2.546602...), where 2.546602... is shorthand for the unique real solution
of q3−9q2+29q−32=0 (which is the nontrivial chromatic root of the
octahedron). Then z is not a chromatic root of any plane triangulation.

Proof. This follows immediately from the facts that there are no
chromatic roots in the relevant intervals: see ref. 96 for (−., 0) and (0, 1),
ref. 101 for (1, 32/27], refs. 102–104 for [5,.), refs. 102, 105, 106 for
(1, 2), and refs. 105 and 107 for (2, 2.546602...).12

L

12 See also refs. 103 and 104 for related results on zero-free intervals.

Examples. 1. A special case of Proposition 2.3(a) is the well-known
fact, ref. 96, p. 23, that B5=(3+`5)/2 is not a chromatic root of any
(loopless) graph, since its conjugate Bg

5=(3−`5)/2 lies in (0, 1) [their
minimal polynomial is q2−3q+1]. We shall prove a vastly stronger result
in Corollary 2.4 below.

2. The number 1+`2 is not a chromatic root of any (loopless) graph,
since its conjugate 1−`2 lies in (−., 0) [their minimal polynomial is
q2−2q−1].

3. For n \ 5, none of the numbers 21/ne2pki/n (k integer) is a chromatic
root of any (loopless) graph, since their conjugate 21/n lies in (1, 32/27]
(their minimal polynomial is qn−2).13

13 This barely fails for n=4. It is amusing to note that 32/27 % 21/4 is equivalent to
(3/2)12 % 27, which underlies the construction of the well-tempered scale.

4. The numbers 2+`2`2−2 and 2±i`2`2+2 are not chroma-
tic roots of any (loopless) graph, since their conjugate 2−`2`2 −2 lies
in (1, 32/27] (their minimal polynomial is q4−8q3+28q2−48q+28).

We now state and prove the promised generalization of the fact that
B5 is not a chromatic root:

Corollary 2.4. A noninteger primitive n th generalized Beraha
number B (k)

n is not a chromatic root of any graph, except possibly when
n=10.

This is an immediate consequence of the case (0, 1) of Proposition
2.3(a) together with the following number-theoretic lemma:
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Lemma 2.5. Let n=5, 7, 8, 9 or n \ 11. Then there exists an integer
k, relatively prime to n, in the interval n/3 < k < n/2.

Proof. If n is a prime \ 5, the result is trivial (take k=Nn/2M). The
cases n=8, 12 can be verified by hand (take k=3, 5, respectively). Other-
wise, note first that it suffices to find k in the interval n/3 < k < 2n/3 (if
k > n/2, then replace k by n−k). So let p be the least prime divisor of n;
define r=Kp/3L \ 1, so that rn/p \ n/3 > (r−1)n/p; and let k be either
rn/p+1 or rn/p+2. Now the only possible common prime factor of k and
n is p: for if pŒ ] p were to divide n, then it would also divide n/p; but if pŒ
also divided k, then it would divide k−rn/p=1 or 2, which is impossible
since pŒ \ 3. But p cannot divide both choices of k. Therefore, this con-
struction allows k to be chosen relatively prime to n; and k lies in the
interval (n/3, 2n/3) provided that n > 12 (when p=2), n > 6 (when p=3)
or n \ 15 (when p \ 5). L

Remarks. 1. As mentioned earlier, the case n=5 of Corollary 2.4 is
ancient folklore; the case n=7 was stated by Tutte (ref. 73, p. 372).
Beraha, Kahane and Weiss (ref. 39, p. 53), asserted that the argument for
B5 ‘‘can be extended without much difficulty to the case of arbitrary
nonintegral Bn’’, apparently overlooking the problem with B10.

2. The exceptional case n=10 is very curious. We do not know
whether B10=(5+`5)/2 % 3.6180339887 and Bg

10=(5−`5)/2 %
1.3819660113 can be chromatic roots. But Proposition 2.3(c) shows that B10

is not a chromatic root of any plane near-triangulation. Note also that when
G is a plane triangulation having n vertices, Tutte’s ‘‘golden identity’’ (refs.
71 and 96, pp. 26–27)

PG(B10)=(y+2) y3n−10PG(B5)2 (2.18)

where y=B5−1 is the golden ratio, together with the fact that PG(B5) ] 0,
yields the slightly stronger result PG(B10) > 0.

3. TRANSFER-MATRIX THEORY

In this section we briefly review the transfer-matrix formalism for
the Potts model, both in the spin representation (Section 3.1) and in the
Fortuin–Kasteleyn representation (Section 3.2). Thereafter we use only the
Fortuin–Kasteleyn representation, which allows us to perform computa-
tions for noninteger q. We conclude by computing the size of the FK-
representation transfer matrix for the square and triangular lattices with
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free longitudinal boundary conditions and either free or periodic transverse
boundary conditions (Section 3.3).

3.1. Transfer Matrix in the Spin Representation

Consider a graph Gn=(Vn, En) consisting of n identical ‘‘layers’’, with
connections between adjacent layers repeated in a regular fashion. Then the
partition function of the Potts model on G can be written in terms of a
transfer matrix.

To make this precise, let V0 be the set of vertices in a single layer, let
E0 be the set of edges within a single layer (we call these horizontal edges),
and let E* be the set of edges connecting each layer to the next one (we call
these vertical edges). Note that E0 is a set of unordered pairs of elements of
V0, while E* is a set of ordered pairs of elements of V0. The vertex set of
the graph Gn is then

Vn=V0×{1, ..., n}={(x, i) : x ¥ V0 and 1 [ i [ n}, (3.1)

while the edge set is either

E free
n =0

n

i=1
Ehoriz

i 2 0
n−1

i=1
Evert

i (3.2)

for free longitudinal boundary conditions or

Eper
n =0

n

i=1
Ehoriz

i 2 0
n

i=1
Evert

i (3.3)

for periodic longitudinal boundary conditions, where

Ehoriz
i ={O(x, i), (xŒ, i)P : OxxŒP ¥ E0} (3.4)

and

Evert
i ={O(x, i), (xŒ, i+1)P : (x, xŒ) ¥ E*} (3.5)

and of course layer n+1 is identified with layer 1. We also assume that the
couplings are identical from layer to layer: that is, we are given weights
{ve}e ¥ E0 2 Eg, and we define the edge weights for Gn by

vO(x, i), (xŒ, i)P=vOxxŒP for OxxŒP ¥ E0 (3.6a)

vO(x, i), (xŒ, i+1)P=v(x, x) for (x, xŒ) ¥ E* (3.6b)
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We now fix an integer q \ 1, and let S={1, ..., q}V0
be the space of

spin configurations on a single layer; we denote a generic such configura-
tion by s={sx}x ¥ V0. We then define the matrices H and V, which encode
the Boltzmann factors corresponding to horizontal and vertical edges,
respectively:

H(sŒ, s)=d(s, sŒ) D
OxxŒP ¥ E0

[1+vOxxŒPd(sx, sxŒ)] (3.7)

V(sŒ, s)= D
(x, xŒ) ¥ Eg

[1+v(x, xŒ)d(sx, s
−

xŒ)] (3.8)

The partition function of the Potts model on Gn is then

ZGfree
n
(q, {ve})=1TH(VH)n−11 (3.9)

ZGper
n
(q, {ve})=tr[(VH)n] (3.10)

where 1 is the vector whose entries all equal 1, and T denotes transpose.
The transfer matrix is thus

T=VH. (3.11)

It has size qm×qm, where m=|V0| is the number of sites in each layer.
The horizontal matrix H is diagonal in the spin basis, hence sparse; its

computation takes a time of order |E0| qm « m2qm. But since the vertical
matrix V is dense, its computation takes in general a time of order |E*| q2m.
This is a severe constraint on the practical applicability of the transfer-
matrix method. However, when the graphs Gn are planar, V can be written
as a product of sparse matrices that correspond to the replacement of one
site on layer i by the corresponding site on layer i+1, so that its computa-
tion takes only a time of order mqm. (Indeed, this can be done for an arbi-
trary planar graph, whether or not it consists of repeated layers. (80)) This
factorization of V can also be performed for some non-planar graphs,
including all those in which the single-layer vertex set V0 can be ordered in
such a way that (x, xŒ) ¥ E* implies xR xŒ.14 (This latter situation includes,

14 This is equivalent to requiring that the directed graph (V0, E**) be acyclic, where
E**={(x, xŒ) ¥ E* : x ] xŒ}.

in particular, all the lattices Zd, since the only vertical edges are of the form
(x, x). On the other hand, it excludes the triangular lattice with periodic
transverse boundary conditions, which needs a separate treatment.) For
simplicity we describe this construction only for the cases of greatest prac-
tical interest, namely when Gn is a square or triangular lattice with free or
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periodic transverse boundary conditions. The single-layer vertex set is thus
V0={1, ..., m}; the horizontal edge set is either

E0
free={Ox, x+1P : 1 [ x [ m−1} (3.12)

for free transverse boundary conditions or

E0
per={Ox, x+1P : 1 [ x [ m} (3.13)

for periodic transverse boundary conditions (where site m+1 is of course
identified with site 1); and the vertical edge set is either

E0
SQ={(x, x) : 1 [ x [ m} (3.14)

for the square lattice,

E0
TRI, free={(x, x) : 1 [ x [ m} 2 {(x+1, x) : 1 [ x [ m−1} (3.15)

for the triangular lattice with free transverse boundary conditions, or

E0
TRI, per={(x, x) : 1 [ x [ m} 2 {(x+1, x) : 1 [ x [ m} (3.16)

for the triangular lattice with periodic transverse boundary conditions.
Note that the diagonal edges in (3.15)–(3.16) point ‘‘southeast–northwest’’.

We now define qm×qm matrices Dx and JxxŒ by

Dx(sŒ, s)=D
y ] x
d(sy, s

−

y) (3.17a)

JxxŒ(sŒ, s)=d(sx, sxŒ) d(s, sŒ) (3.17b)

Thus, Dx (for ‘‘detach’’ or ‘‘disconnect’’) is of the form I é I é · · · é E é · · ·
é I é I, where I is the q×q identity matrix, E is the q×q matrix whose
entries are all 1, and the E factor occurs at position x; informally, Dx dis-
connects the two rows at site x. Since I and E commute, all the operators
Dx commute among themselves. Likewise, JxxŒ identifies (‘‘joins’’) spins x
and xŒ in a single layer. Since the operators JxxŒ are diagonal in the spin
basis, they also commute among themselves. Finally, Dx commutes with
JxŒxœ whenever x is different from both xŒ and xœ.

We now define matrices

Pj=v(j, j)I+Dj (3.18)

Qj=I+vOj, j+1PJj, j+1 (3.19)

Rj=I+v(j+1, j)Jj, j+1 (3.20)
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corresponding to the Boltzmann factors for vertical, horizontal and
diagonal edges, respectively.15 The horizontal and vertical parts of the

15 In this sentence we are of course using the term ‘‘vertical edges’’ in its ordinary geometrical
sense, not in the technical sense defined previously. We follow the notation of Baxter,
ref. 56, Section 2, with some modifications.

transfer matrix are then

H free
SQ=H free

TRI=Qm−1 · · ·Q2Q1 (3.21a)

Hper
SQ=QmQm−1 · · ·Q2Q1 (3.21b)

and

V free
SQ=Vper

SQ=PmPm−1 · · ·P2P1 (3.22a)

V free
TRI=PmRm−1Pm−1 · · ·R2P2R1P1 (3.22b)

where the action of these matrices should always be read from right to left.
Note that Rj corresponds to a diagonal edge whenever it is applied after Pj

and before Pj+1.
For the triangular lattice with periodic transverse boundary conditions,

a slight trick is needed in order to treat correctly the last diagonal bond
joining columns m and 1. (56) The idea is to work with qm+1×qm+1 matrices
indexed by spins s=(s1, ..., sm+1), and include in the horizontal matrix an
operator that identifies sm+1 with s1 on each row. Thus,

Hper
TRI=Jm+1, 1QmQm−1 · · ·Q2Q1 (3.23)

Vper
TRI=Pm+1RmPmRm−1Pm−1 · · ·R2P2R1P1 (3.24)

In particular, the vertical matrix Vper
TRI is just V free

TRI with m replaced by m+1.

Remarks. 1. The rewriting (3.21b) of the horizontal matrix H is of
course unnecessary, as H was already diagonal (hence sparse) in the spin
basis. But (3.21b) will be useful when we use the partition basis (see below).

2. The order of operators in (3.21b), (3.22a) and (3.23) is irrelevant, as
all the operators in question commute. Only in (3.22b) and (3.24) is the
operator ordering crucial.

3. The operators e1, ..., e2m−1 defined by

e2j−1=q −1/2Dj for 1 [ j [ m (3.25a)

e2j=q1/2Jj, j+1 for 1 [ j [ m−1 (3.25b)
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satisfy the Temperley–Lieb algebra (108, 4, 80)

e2
i=q1/2ei (3.26a)

eiei±1ei=ei (3.26b)

eiej=ejei for |i− j| > 1 (3.26c)

All these operators act, of course, in the qm-dimensional vector space
consisting of all functions of s1, ..., sm.16 But for the case of free longitu-

16 Or, in the case of the triangular lattice with periodic transverse b.c., in the qm+1-dimensional
space of all functions of s1, ..., sm+1.

dinal boundary conditions (3.9), we need only consider the subspace
spanned by those vectors that can be obtained from the constant vector 1
by action of the operators H and V. All such functions are sums of pro-
ducts of delta functions d(sx, sy), and we can take as a basis the functions
vP associated to a partition P={P1, ..., Pk} of {1, ..., m} by

vP(s1, ..., sm)=D
P ¥P

D
x, y ¥ P

d(sx, sy). (3.27)

For example, for m=3 we have the five basis vectors

v{{1}, {2}, {3}}=1 (3.28a)

v{{1, 2}, {3}}=d(s1, s2) (3.28b)

v{{1, 3}, {2}}=d(s1, s3) (3.28c)

v{{1}, {2, 3}}=d(s2, s3) (3.28d)

v{{1, 2, 3}}=d(s1, s2, s3) (3.28e)

Indeed, when the graph G is planar, it is not hard to see on topological
grounds that only non-crossing partitions can arise. (A partition is said to
be non-crossing if a < b < c < d with a, c in the same block and b, d in the
same block imply that a, b, c, d are all in the same block.) Moreover,
spatial symmetries can further restrict the subspace. Finally, when the
horizontal couplings vOxxŒP are all equal to −1—which is the case for the
chromatic polynomial—then the horizontal operator H is a projection, and
we can work in its image subspace by using the modified transfer matrix
TŒ=HVH in place of T=VH, and using the basis vectors

wP=HvP (3.29)
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in place of vP. Note that wP=0 if P has any pair of nearest neighbors in
the same block. In Section 3.3 we shall compute the dimensions of all these
subspaces.

The action of the operators Dx and JxxŒ on the basis vectors vP is quite
simple. As one might expect, JxxŒ joins sites x and xŒ, i.e.

JxxŒvP=vP•xxŒ (3.30)

where P • xxŒ is the partition obtained from P by amalgamating the blocks
containing x and xŒ (if they were not already in the same block). Dx

detaches site x from the block it currently belongs to, multiplying by a
factor q if x is currently a singleton:

DxvP=3
vP0x if {x} ¨P

qvP if {x} ¥P
(3.31)

where P0x is the partition obtained from P by detaching x from its block
(and thus making it a singleton).

At the final stage we need to compute the inner products 1TvP, which
are easy:

1TvP=q |P| (3.32)

where |P| is the number of blocks in P.
To summarize: The Potts-model partition function (3.9) or (3.10) can

always be computed by the transfer-matrix method working in the spin
basis f(s1, ..., sm), which has dimension qm. Of course, each value of q has
to be treated separately; and it goes without saying that q must be a posi-
tive integer. On the other hand, for free longitudinal boundary conditions,
there is an alternative method for computing the partition function (3.9),
using the partition basis vP. In this formalism q appears only as a param-
eter [in (3.31) and (3.32)]; and since the final result will obviously be a
polynomial in q, it must perforce be equal to the Fortuin–Kasteleyn parti-
tion function (2.4). This latter formalism is thus essentially equivalent to
constructing the transfer matrix directly in the Fortuin–Kasteleyn repre-
sentation, as we shall see explicitly in the next subsection.

3.2. Transfer Matrix in the Fortuin–Kasteleyn Representation

Let us now temporarily forget the Potts spin model—and in particular
forget the transfer-matrix formalism constructed in the preceding
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subsection—and try instead to devise a transfer-matrix method for com-
puting the Fortuin–Kasteleyn partition function (2.4) when the graph G
has a layered structure (3.1)–(3.6b). What makes this a bit tricky is, of
course, the nonlocality of the factor qk(EŒ) in (2.4). The technique for handl-
ing this nonlocality was foreshadowed in the work of Lieb and Beyer (109) on
percolation and was made explicit (for the case of the chromatic polyno-
mial) in the work of Biggs and collaborators. (110–112) In the physics litera-
ture, this approach was first used (to our knowledge) by Derrida and
Vannimenus (113) in their study of percolation, and was applied to the q-state
Potts model (and explained very clearly) by Blöte and Nightingale; (67) it was
subsequently employed by several groups. (114–117) Here we limit ourselves to
giving a brief summary.

The basic idea is to build up the subgraph EŒ ı E layer by layer. At
the end we will need to know the number of connected components in this
subgraph; in order to be able to compute this, we shall keep track, as we go
along, of which sites in the current ‘‘top’’ layer are connected to which
other sites in that layer by a path of occupied bonds (i.e. bonds of EŒ) in
lower layers. Thus, we shall work in the basis of connectivities of the top
layer, whose basis elements vP are indexed by partitions P of the single-
layer vertex set V0. [The reader is reminded to forget (3.27) for the time
being. The vP should here be thought of simply as abstract basis elements
indexed by partitions P.] The elementary operators we shall need are the
join operators

JxxŒvP=vP • xxŒ (3.33)

(note that all these operators commute) and the detach operators

DxvP=3
vP0x if {x} ¨P

qvP if {x} ¥P
(3.34)

where P • xxŒ and P0x were defined previously (don’t forget those defini-
tions!). The horizontal transfer matrix is then

H= D
OxxŒP ¥ E0

[1+vOxxŒPJxxŒ]. (3.35)

The vertical transfer matrix is slightly more complicated:

VvP= C
E2 ı Eg

qA(P, E2) 1 D
(x, xŒ) ¥ E2

v(x, xŒ)
2 vP | E2 (3.36)
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where A(P, E2) is the number of ‘‘abandoned clusters’’, i.e. the number of
blocks P ¥P such that no vertex in P is an endpoint of an edge in E2 ; and
P | E2 is the partition of V0 in which vertices xŒ, yŒ lie in the same block if
and only if there exist vertices x, y in the same block of P such that both
(x, xŒ) and (y, yŒ) lie in E2 .

In many cases (including all planar graphs), V can be written as a
product of sparse matrices that correspond to the replacement of one site
on layer i by the corresponding site on layer i+1; and these sparse matrices
have a simple expression in terms of join and detach operators. Suppose,
for concreteness, that the single-layer vertex set V0 can be ordered in such a
way that (x, xŒ) ¥ E* implies xR xŒ; using this ordering, let us number the
sites of V0 as 1, ..., m. Then

V=PmRm−1, mPm−1
1 D

y > m−2
Rm−2, y
2 Pm−2 · · ·1D

y > 2
R2, y
2 P2
1D

y > 1
R1, y
2 P1,

(3.37)

where

Px=v(x, x)I+Dx (3.38)

Rx, y=I+v(y, x)Jxy (3.39)

(The triangular lattice with periodic transverse b.c. is handled using the
trick discussed in the preceding subsection.)

Finally, the partition function for free longitudinal boundary condi-
tions can be obtained by sandwiching the transfer matrix between suitable
vectors on right and left:

ZGfree
n
(q, {ve})=uTH(VH)n−1 vid, (3.40)

where ‘‘id’’ denotes the partition in which each site x ¥ V0 is a singleton,
and uT is defined by

uTvP=q |P|. (3.41)

Of course, it will not have escaped the reader’s notice that all the
formulae in this subsection are identical to those developed in the preceding
subsection; only the interpretation is different. In particular, the operators
Dx and JxxŒ in the FK representation act in precisely the same way as the
operators of the same name act in the spin representation with respect to
the partition basis.

Let us observe, in conclusion, that the Potts model with free longitu-
dinal boundary conditions is much easier to handle than that with periodic

630 Salas and Sokal



longitudinal boundary conditions. We can understand the difficulty posed
by periodic longitudinal b.c. from two complementary points of view. In
the spin representation, the trouble is that, because of the trace in (3.10),
we must compute the action of T in the entire qm-dimensional space of
functions of s1, ..., sm, not merely in the subspace spanned by sums of
products of delta functions. In some cases this can be done by careful
counting of subspaces and dimensions, (34, 35) but it is not entirely trivial. In
the FK representation, by contrast, everything is fully automated, but it is
not sufficient to keep track of the connectivities of the sites in the top layer
alone, as this layer will eventually need to be joined up to the bottom layer.
Rather, it is necessary to keep track of the combined connectivities of the
sites in the top and bottom layers: this method for handling periodic longi-
tudinal b.c. will be sketched in Section 7.4 and explained in detail in a sub-
sequent paper. (89)

3.3. Dimension of the Transfer Matrix

Let us consider a strip of width m with free longitudinal boundary
conditions. We want to know the dimension of the corresponding FK-
representation transfer matrix for different lattices (square and triangular)
and different transverse boundary conditions (free and periodic). Each of
these cases corresponds to a different class of allowed partitions P. The
more stringent the restrictions on the allowed partitions, the smaller the
dimension of the transfer matrix.

We shall in general follow the notation of Stanley’s 2-volume work
Enumerative Combinatorics, (118, 119) where more detail on various integer
sequences can be found. Another useful reference is the On-Line Encyclo-
pedia of Integer Sequences. (120)

1) Let Pm denote the set of all partitions of {1, ..., m}. Its cardinality is
given by the Bell numbers (or exponential numbers) B(m), which can be
computed (ref. 121, Sections 6.1 and 6.3), from the exponential generating
function

EB(x) — C
.

m=0
B(m)

xm

m!
=exp(ex−1) (3.42)

or from the remarkable formula

B(m)=e −1 C
.

k=0

km

k!
(3.43)

Transfer Matrices and Partition-Function Zeros 631



(it is far from obvious at first sight that the right-hand side defines an
integer!). For example, for m=4 we have B(4)=15, corresponding to the
partitions17

17 Henceforth we shall abbreviate delta functions d(s1, s3) by d13, etc. Moreover, we shall
usually abbreviate partitions P by writing instead the corresponding product vP of delta
functions [cf. (3.27)]: e.g. in place of P={{1, 3}, {2, 4}, {5}} we shall write simply
P=d13d24.

P4={1, d12, d13, d14, d23, d24, d34, d123, d124, d134, d234, d1234,

d12d34, d13d24, d14d23}. (3.44)

The Bell numbers have the asymptotic behavior (ref. 121, Sections 6.1–6.3,
ref. 122, Section 5.8, and ref. 123, Examples 5.4, 5.10, 12.5 and 12.6)

log B(m)=mW(m+1)−m+
m+1

W(m+1)
−
1
2

log[W(m+1)+1]

−2+O 1 log m
m
2 (3.45a)

=mW(m)−m+
m

W(m)
−
1
2

log[W(m)+1]−1+o(1) (3.45b)

=m log m−m loglog m−m+
m log log m

log m
+

m
log m

+O 1m(loglog m)2

(log m)2
2 (3.45c)

as mQ., where W(z) denotes the unique real solution of wew=z (this is
the Lambert W function (124)) and has the (very slowly) convergent expan-
sion in powers of 1/log z and loglog z/log z:

W(z)=log z− log log z+C
.

n=1
C
n

k=1
(−1)n+1 s(n, n−k+1)

k!
(log log z)k

(log z)n (3.46)

where the s(n, a) are the Stirling numbers of the first kind. [The expansions
(3.45ca,b) thus yield much better numerical approximations than (3.45cc).]
The Bell numbers for 1 [ m [ 14 are shown in Table 2.
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Table 2. Dimension of the Transfer Matrixa

m B(m) Cm TriFree(m) SqFree(m) dm TriCyl(m) SqCyl(m)

1 1 1 1 1 1 1 1
2 2 2 1 1 1 1 1
3 5 5 2 2 1 1 1
4 15 14 4 3 3 2 2
5 52 42 9 7 6 2 2
6 203 132 21 13 15 5 5
7 877 429 51 32 36 6 6
8 4140 1430 127 70 91 15 14
9 21147 4862 323 179 232 28 22

10 115975 16796 835 435 603 67 51
11 678570 58786 2188 1142 1585 145 95
12 4213597 208012 5798 2947 4213 368 232
13 27644437 742900 15511 7889 11298 870 498
14 190899322 2674440 41835 21051 30537 2211 1239

a For each strip width m we give the number B(m) of all partitions, the number Cm of non-
crossing partitions, the number TriFree(m)=Mm−1 of non-crossing non-nearest-neighbor
partitions with free boundary conditions, and the number SqFree(m) of equivalence classes
of non-crossing non-nearest-neighbor partitions modulo reflection in the center of the strip.
We also give the number dm (=Rm for m \ 2) of non-crossing non-nearest-neighbor parti-
tions with periodic boundary conditions, the number TriCyl(m) of equivalence classes of
such partitions modulo translations, and the number SqCyl(m) of equivalence classes of
such partitions modulo translations and reflections.

The Bell numbers can also be written as

B(m)=C
m

k=1
S(m, k), (3.47)

where the Stirling number of the second kind S(m, k) is the number of ways
of partitioning the set {1, ..., m} into k nonempty subsets (i.e., the number
of ways of placing m labeled balls into k indistinguishable boxes, with each
box containing at least one ball).

2) If the graph G is planar, then only non-crossing partitions can
occur. The number of non-crossing partitions of {1, ..., m} is given by the
Catalan number18

18 Stanley (ref. 119, Exercises 6.19 and 6.25) gives 66 combinatorial interpretations and 9
algebraic interpretations of the Catalan numbers Cn. See also ref. 119, Exercise 6.24.

Cm=
(2m)!

m! (m+1)!
=

1
m+1
12m
m
2 . (3.48)

Transfer Matrices and Partition-Function Zeros 633



Thus, for m=4 we have Cm=14, corresponding to the partitions

Pnc, 4={1, d12, d13, d14, d23, d24, d34, d123, d124, d134, d234, d1234,

d12d34, d14d23}, (3.49)

since the only crossing partition of {1, 2, 3, 4} is d13d24. The Catalan
numbers have the asymptotic behavior

Cm=4mm −3/2p −1/2[1+O(1/m)] (3.50)

as mQ.. For 1 [ m [ 14 they are shown in Table 2.
3) For the zero-temperature antiferromagnetic model (v=−1), we can

work in the basis wP defined by (3.29), so that partitions with nearest
neighbors in the same block are also forbidden. Let us consider first the
case of free transverse boundary conditions. The number of non-crossing
non-nearest-neighbor partitions of {1, ..., m} is given by the Motzkin
number Mm−1 (ref. 125, Proposition 3.6 and ref. 126).19 Here Mn is the

19 Warning: Several references use the notation mn to denote what we call Mn; and one
reference (127) writes Mn to denote a different sequence.

number of ways of drawing any number of nonintersecting chords among n
points on a circle20; it is given by the explicit formula

20 This interpretation of Mn arises in enumerating the ‘‘non-magnetic connectivities’’ of a loop
model on the square lattice (ref. 115, pp. 1436–1437). See Stanley (ref. 119, Exercises 6.38
and 6.46(b)) for 14 combinatorial interpretations of the Motzkin numbers Mn.

Mn=C
Nn/2M

j=0

1 n
2j
2 Cj (3.51)

and satisfies both the linear recursion relation

Mn=
2n+1
n+2

Mn−1+
3n−3
n+2

Mn−2+dn0 (3.52)

and the nonlinear recursion relation

Mn=Mn−1+C
n−2

k=0
MkMn−2−k+dn0 (3.53)
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with initial condition Mn=0 for n < 0 (see e.g. refs. 127–130). The
generating function M(x)=;.

n=0 Mnxn is

M(x)=
1−x−`1−2x−3x2

2x2
. (3.54)

For example, for m=4 we have M3=4, corresponding to the partitions

Pnc+nnn, 4={1, d13, d14, d24}. (3.55)

The Motzkin numbers have the asymptotic behavior

Mn=3nn −3/2 3`3

2`p
[1+O(1/n)] (3.56)

as nQ.. The transfer matrix for a triangular-lattice strip of width m with
free boundary conditions at zero temperature has dimension

TriFree(m)=Mm−1. (3.57)

The numbers TriFree(m)=Mm−1 for 1 [ m [ 14 are shown in Table 2.
4) Let us now consider the zero-temperature antiferromagnetic model

with periodic transverse boundary conditions. The number of non-crossing
non-nearest-neighbor partitions of {1, ..., m} when it is considered perio-
dically (i.e. when 1 and m also are considered to be nearest neighbors) is
given by ref. 130, Section 3.2, family R221:

21 Let dm be the number of non-crossing non-nearest-neighbor partitions of {1, ..., m} when it
is considered periodically. We have d1=d2=1 and Mm−1=dm−1+dm for m \ 3. [Proof:

For m \ 3, a non-crossing non-nearest-neighbor partition of {1, ..., m} (considered linearly)
either has 1 and m in the same block or it doesn’t. There are dm partitions of the latter type.
And in any partition of the former type, we can consider 1 and m to be amalgamated into a
single site 1Œ that is a neighbor of both 2 and m−1; so there are dm−1 partitions of this
type.] The formula (3.59) for dm then follows by induction.

dm=3
1 for m=1
Rm for m \ 2

(3.58)

where the Riordan numbers (or Motzkin alternating sums) Rm
(128, 127, 130)22 are

22 In most of the literature (e.g. refs. 128 and 127) these numbers are called cm. We have
adopted the recent proposal of Bernhart (130) to name them after Riordan (128) and denote
them Rm.

defined by R0=1, R1=0 and

Rm=C
m−1

k=0
(−1)m−k−1Mk for m \ 2 (3.59)

Transfer Matrices and Partition-Function Zeros 635



and satisfy the linear recursion relations

Rm=−Rm−1+Mm−1+dm0 (3.60)

Rm=
2m−2
m+1

Rm−1+
3m−3
m+1

Rm−2+dm0 (3.61)

and the nonlinear recursion relation

Rm=C
m−1

k=0
RkRm−1−k+(−1)m (3.62)

with initial condition Rm=0 for m < 0 (see e.g. refs. 128, 127, and 130).
The generating function R(x)=;.

m=0 Rmxm is

R(x)=
1+x−`1−2x−3x2

2x(1+x)
. (3.63)

For example, for m=4 we have d4=R4=3, corresponding to the parti-
tions

Pnc+nnnCyl, 4={1, d13, d24} (3.64)

The Riordan numbers have the asymptotic behavior

dm=Rm=3mm −3/2 3`3

8`p
[1+O(1/m)] (3.65)

as mQ.. The numbers dm for 1 [ m [ 14 are shown in Table 2.
5) Further restrictions arise from spatial symmetries. For instance, if

we consider the square-lattice strip with free transverse boundary condi-
tions, then reflection with respect to the center of the strip is a symmetry of
the system. We can therefore define equivalence classes of non-crossing non-
nearest-neighbor partitions modulo reflection.23 The dimension SqFree(m)

23 One could also drop the non-nearest-neighbor condition; this would be relevant at nonzero
temperature.

of the transfer matrix is then given by the number of these equivalence
classes. Since each equivalence class contains either one or two partitions
(and some contain only one), we clearly have

TriFree(m)
2

< SqFree(m) [ TriFree(m). (3.66)
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For m=4, for example, we have three equivalence classes:

PSqFree, 4={1, d13+d24, d14}. (3.67)

We have been unable to compute an explicit formula for SqFree(m), or to
find any known integer sequence that corresponds to SqFree(m). The
asymptotic behavior is clearly the same as that of TriFree(m) within a
factor 2, hence of order 3mm −3/2. (We conjecture that SqFree(m) %
TriFree(m)/2, since ‘‘most’’ partitions are asymmetric. The data in Table 2
strongly suggest that this conjecture is true: the ratios SqFree(m)/
TriFree(m) are roughly decreasing in m, albeit with some even-odd oscilla-
tion, and seem clearly to be approaching 1/2. Indeed, at m=14 the ratio
has already reached % 0.5032.)

6) For the square lattice with periodic transverse boundary conditions,
both reflections and translations are symmetries. We therefore define
equivalence classes of non-crossing non-nearest-neighbor partitions modulo
reflections and translations and the corresponding number SqCyl(m) of
equivalence classes.24 Since each equivalence class contains at most 2m

24 One could also drop the non-nearest-neighbor condition; this would be relevant at nonzero
temperature.

partitions (and some contain less), we clearly have

dm

2m
< SqCyl(m) [ dm. (3.68)

For m=4, there are only two such classes:

PSqCyl, 4={1, d13+d24}. (3.69)

We have been unable to compute an explicit formula for SqCyl(m), or to
find any known integer sequence that corresponds to SqCyl(m). The
asymptotic behavior is clearly the same as that of dm within a factor 2m,
hence the leading behavior is ’ 3m. (We conjecture that SqCyl(m) %
dm/(2m), since ‘‘most’’ partitions are asymmetric. The data in Table 2
strongly suggest that this conjecture is true: the ratios 2mSqCyl(m)/dm are
roughly decreasing in m, albeit with some even-odd oscillation, and seem to
be approaching a value near 1. At m=14 the ratio has already reached
% 1.14.)

7) For the triangular lattice, reflection is not a symmetry; but if we
have periodic transverse boundary conditions, then translations are sym-
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metries. We therefore define equivalence classes of non-crossing non-
nearest-neighbor partitions modulo translations, and the corresponding
number TriCyl(m) of equivalence classes.25 Since each equivalence class

25 One could also drop the non-nearest-neighbor condition; this would be relevant at nonzero
temperature.

contains at most m partitions (and some contain less), we clearly have

dm

m
< TriCyl(m) [ dm. (3.70)

For m=4, there are again only two such classes:

PTriCyl, 4={1, d13+d24}. (3.71)

Indeed, we have found that TriCyl(m)=SqCyl(m) for m [ 7; only for
m \ 8 does reflection symmetry impose additional constraints beyond those
imposed by translation symmetry, so that TriCyl(m) > SqCyl(m). We have
been unable to compute an explicit formula for TriCyl(m), or to find any
known integer sequence that corresponds to TriCyl(m). The asymptotic
behavior is clearly the same as that of dm within a factor m, hence the
leading behavior is ’ 3m. (We conjecture that TriCyl(m) % dm/m, since
‘‘most’’ partitions are asymmetric. The data in Table 2 strongly suggest
that this conjecture is true: the ratios mTriCyl(m)/dm are roughly decreas-
ing in m, albeit with strong even-odd oscillation, and seem clearly to be
approaching 1. At m=14 the ratio has already reached % 1.01.)

Although the dimension of the transfer matrix is given by SqCyl(m),
SqFree(m), TriCyl(m) or TriFree(m), the basis with respect to which the
vectors are expressed is considerably larger, namely the set Pnc, m of all non-
crossing partitions (or Pm in case G is non-planar). Thus, the vectors
produced at intermediate stages of the computation can be rather long; this
is the main limiting factor in our numerical work. In order to save memory,
we use the following tricks:

• Label the partitions by an integer variable k=1, ..., B(m). (For large
widths m, however, it is vastly more efficient to include only the smaller set
of the non-crossing partitions k=1, ..., Cm; (67, 116) this approach will be
taken in future work in collaboration with Jesper-Lykke Jacobsen. (87, 88))

• Represent the vectors in sparse-vector format (i.e. representing
explicitly only nonzero coefficients). This is automatic in Mathematica.
(If, however, we consider only the set of non-crossing partitions, then
typical intermediate vectors are dense, so that sparse-vector format is
actually a disadvantage.)

638 Salas and Sokal



• The coefficients of the chromatic polynomial are extremely large
integers, which grow rapidly with the width and length of the strip. We can
reduce the magnitude of these coefficients (and therefore save memory) by
performing a change of variables u=q−q0, where q0 lies at or near the
barycenter of the roots. This barycenter lies at |E|/|V|, where |E| (resp. |V|)
is the number of edges (resp. vertices) in the graph G; that is, it lies at half
the average coordination number. It is therefore convenient to take q0=2
(resp. q0=3) for the square (resp. triangular) lattice; this vastly reduces the
size of the coefficients of the chromatic polynomial, as was noted already
by Baxter. (56)

Remark. As explained in Section 3.1, when computing the transfer
matrix for a triangular-lattice strip of width m and cylindrical boundary
conditions, we use the following technical trick: (56) To take account of the
diagonal bond joining the sites m and 1, it is convenient to consider a
triangular strip of width m+1 and, at the end of the computation, identify
the spins at sites m+1 and 1. This means that the number of partitions
arising in intermediate steps of the computation is not Cm, but Cm+1.
However, the dimension of the transfer matrix is still TriCyl(m).

4. EIGENVALUE CROSSING AND ISOLATED LIMITING POINTS

4.1. Computation of Eigenvalue-Crossing Curves

The limiting curve B is the locus of points in the q-plane where there
are two or more dominant eigenvalues. Our approach is to compute first
the locus of q values where there are two or more equimodular eigenvalues,
dominant or not; we then check the corresponding eigenvalues one-by-one
for dominance. We have used two methods to compute the locus of equi-
modularity: the resultant method, and the direct-search method.

4.1.1. The Resultant Method

The resultant of two polynomials P(x)=A<M
i=1 (x−xi) and Q(y)=

B<N
i=1 (y−yi) is defined to be the product of all the differences of roots,

scaled suitably by the two leading coefficients:

Res(P, Q)=ANBM D
M

i=1
D
N

j=1
(xi−yj). (4.1)

Thus, the resultant vanishes if and only if P and Q have at least one root in
common (or one or both of the leading coefficients vanishes). It is a non-
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trivial fact that the resultant Res(P, Q) can be expressed as an
(M+N)×(M+N) determinant involving the coefficients of P and Q; it is
not necessary to know explicitly the roots {xi} and {yj}.

Likewise, the discriminant of a polynomial P(x)=A<M
i=1 (x−xi) is

defined as

Disc(P)=A2M−2 D
i < j
(xi−xj)2=(−1)M(M−1)/2 A2M−2 D

i ] j
(xi−xj). (4.2)

(For a quadratic P(x)=ax2+bx+c, we have Disc(P)=b2−4ac, which
agrees with the definition used in high-school algebra.) It is not difficult to
show that

Disc(P)=(−1)M(M−1)/2 A −1 Res(P, PŒ), (4.3)

so that the discriminant vanishes if and only if P has at least one multiple
root.26

26 Lang (ref. 131, p. 204), warns that many books (including his own first edition!) contain
sign errors (i.e. fail to include the factor (−1)M(M−1)/2) either in the definition of the discri-
minant or in the formula relating it to the resultant.

For further information on resultants and discriminants and
algorithms for computing them, see e.g. ref. 132, Chapter 3.

Consider now the characteristic polynomial of the transfer matrix
T(q):

P(l, q)=det[lI−T(q)]=D
dim T

i=1
[l−li(q)], (4.4)

where {li(q)} are the eigenvalues of T(q). Consider next the polynomial

Ph(l, q)=P(e ihl, q). (4.5)

P and Ph are polynomials in l whose coefficients are polynomials in q (and
in e ih), and they have a root in common if and only if T(q) has eigenvalues
l1 and l2 satisfying l1=e ihl2. (Note that, in addition to the desired case of
an equimodular pair of eigenvalues, this also occurs whenever T(q) has a
zero eigenvalue.) We can therefore compute the locus of equimodularity by
sweeping over a closely spaced set of points h ¥ (0, p], and computing for
each h the roots of

Rh(q)=Resl(P, Ph), (4.6)

which is a polynomial in q and e ih.27

27 This method was presumably known already to Beraha, Kahane and Weiss: see ref. 38,
footnote 2.
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Of course, h=0 is a special case: here we are looking for the multiple
roots of P, which can be located by computing the zeros of the discrimi-
nant

R̃0(q)=Resl(P, PŒ)=lim
hQ 0

Rh(q)
(− ih)dim TP(0, q)

(4.7)

where PŒ(l, q)=“P(l, q)/“l. As we shall see, the zeros corresponding to
h=0 are very important because they correspond to the endpoints of the
curves of equimodularity.

After finding a set of q values for which T(q) has a pair of equimo-
dular eigenvalues, we check them one-by-one by solving the characteristic
equation P(l, q)=0 and testing whether the pair of equimodular eigen-
values is dominant or subdominant. The limiting curve B of partition-
function zeros corresponds only to the crossing in modulus of dominant
eigenvalues; nevertheless, it is sometimes of interest to depict the loci of
subdominant eigenvalue-crossing as well. Whenever we do so in this paper,
we shall draw the dominant eigenvalue-crossing curves using solid black
lines and the subdominant curves with dashed grey lines.

In practice, we first use Mathematica to compute Rh(q) symbolically
as a polynomial in q and e ih with integer coefficients. To minimize the effect
of round-off errors in the subsequent computation, we use instead of h the
real variable t=tan(h/2) ¥ (0,.] defined by

e ih=
1+it
1−it

, (4.8)

and we always choose t to be a rational number. In this way, e ih is a
complex rational number whose modulus is always exactly equal to 1, and
the polynomial Rh(q) has complex rational coefficients. This allows us to
take advantage of arbitrary-precision polynomial root-finders such as
Mathematica’s NSolve or (better yet) the package MPSolve 2.0
developed by Bini and Fiorentino (refs. 133 and 134).28

28 MPSolve 2.0 is much faster than Mathematica’s NSolve for high-degree polynomials (this
is reported in ref. 134, and we confirm it); it gives guaranteed error bounds for the roots,
based on rigorous theorems; (134) its algorithms are publicly documented; (134) and its source
code is freely available. (133)

The drawback of the resultant method is that the degree of the resul-
tant polynomial Rh(q) grows very rapidly with the width of the lattice strip;
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moreover, the coefficients in Rh(q) also grow very rapidly (even if we use
the variable u=q−q0). This limits in practice the widths we can study:
Lx [ 6 for free transverse boundary conditions and Lx [ 8 for periodic
transverse boundary conditions.

Remark. In some cases (notably with periodic and twisted-periodic
boundary conditions in the longitudinal direction (26, 27, 29, 31–33)), the ampli-
tude corresponding to one or more eigenvalues can vanish identically. If
this occurs for one of the dominant eigenvalues, blind application of the
foregoing procedure can lead to erroneous results. As a safeguard against
this phenomenon, we numerically computed the corresponding amplitudes
for a selected value of q, by numerically diagonalizing the transfer matrix
and rotating the corresponding vectors on left and right. It suffices to find
at least one value of q for which none of the amplitudes vanishes. In all the
cases considered in this paper, an identically-vanishing amplitude never
arises.

Example. In the simple special case of a 2×2 transfer matrix

T(q)=1
a(q) b(q)

c(q) d(q)
2 (4.9)

with left and right vectors

uF=1
f(q)

g(q)
2 (4.10a)

vF=1
1

0
2 (4.10b)

and partition function

Zn=uFTTn−1vF (4.11)

for a strip of length n (where T denotes transpose), we can obtain explicit
expressions. We have

Zn(q)=a− (q) l− (q)n−1+a+(q) l+(q)n−1, (4.12)
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where the eigenvalues l± and their corresponding amplitudes a± are

l± (q)=
1
2 (tr T(q)±`tr2T(q)−4 det T(q)) (4.13a)

— 1
2 (P1(q)±`P2(q)) (4.13b)

and

a± (q)=
1
2
1f(q)±[a(q)−d(q)] f(q)+2c(q) g(q)

`tr2T(q)−4 det T(q)
2 (4.14a)

—
1
2
1f(q)± P3(q)

`P2(q)
2 . (4.14b)

Note that even though the eigenvalues and the amplitudes are non-poly-
nomial algebraic functions of q, the partition function Zn(q) is always a
polynomial in q. From these equations it is not difficult to prove the
recurrence relation

Zn+2(q)−[tr T(q)] Zn+1(q)+[det T(q)] Zn(q)=0. (4.15)

According to the Beraha–Kahane–Weiss theorem (Theorem 2.1), the
limit points as nQ. of the partition-function zeros are of two types: the
isolated limiting points, which occur where one eigenvalue is dominant and
its amplitude vanishes; and curves of non-isolated limiting points, where
there is a crossing in modulus of two or more dominant eigenvalues. In our
simple case, the limiting curves are given by the condition |l− (q)|=|l+(q)|,
which means that P2(q)/P1(q)2 should be a negative real number (call it
−t2), or in other words

tr2T(q)=4t̃ det T(q) with 0 [ t̃ —
1

1+t2
[ 1. (4.16)

An identical result is obtained using the resultant method (4.6)/(4.7): we
have

P(l, q)=l2−[tr T(q)] l+det T(q) (4.17)

and hence

Rh(q)=(1−e ih)2 [det T(q)][(1+e ih)2 det T(q)−e ih tr2 T(q)] (4.18a)

R̃0(q)=4 det T(q)− tr2 T(q)=−P2(q) (4.18b)
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We see that (4.18a) vanishes precisely on the curve (4.16): it suffices to
insert (4.8) and note that

(1+e ih)2

e ih =
4

1+t2
=4t̃ (4.19)

[equivalently, t̃=cos2(h/2)].
The isolated limiting points of zeros are given by the condition that

the amplitude of the leading eigenvalue vanishes. We first compute the
product of the two amplitudes:

a− (q) a+(q)=
P4(q)
P2(q)

(4.20)

where

P4(q) —
f(q)2 P2(q)−P3(q)2

4
=Z1(q) Z3(q)−Z2(q)2. (4.21)

[Note that (4.20)/(4.21) is just Lemma 2.2 specialized to the case M=2.]
We now observe that a root of P4 corresponds to the vanishing of a− (resp.
a+) in case f`P2=P3 (resp. f`P2=−P3); and l− (resp. l+) is domi-
nant in case Re(P1/`P2) < 0 (resp. > 0). It follows that a root of P4 cor-
responds to the vanishing of the amplitude corresponding to the dominant
eigenvalue in case

Re
f(q) P1(q)
P3(q)

< 0 (4.22)

there. If P3(q)=0 at a root of P4, then both amplitudes vanish there.

4.1.2. Direct-Search Method

When we were unable to apply the resultant method (i.e. for large
lattice widths), or when we wanted to study in detail a small region in the
q-plane (for any lattice width), we used a direct-search method to obtain
the curves of equimodularity. The idea is to define a function that measures
the difference between the moduli of the two dominant eigenvalues of the
transfer matrix. Since an explicit expression of the eigenvalues as a function
of q is usually not available, the eigenvalues are obtained numerically for
each value of q. Then we extract the two eigenvalues of largest modulus
and compute

F(q) — |l1(q)|− |l2(q)| (4.23)
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where wl1(q)Q wl2(q) in lexicographic order (here w is some arbitrarily
chosen nonzero complex number). Clearly F(q) vanishes if and only if the
two dominant eigenvalues are equimodular; moreover, because generically
the two dominant eigenvalues will not satisfy Re[wl1(q)]=Re[wl2(q)]
precisely where they also satisfy |l1(q)|=|l2(q)|, they will generically not
interchange roles at the eigenvalue crossing, and hence F(q) will be a
smooth function of q there.29 We then search for the zeros of F(q) using a

29 There is nothing special about lexicographic order; virtually any order will do, except
ordering by moduli. In practice, we used Mathematica’s default ordering, which is slightly
different from lexicographic. Note also that any nonzero w ¥ C will do; but when studying
an eigenvalue crossing on the real q axis (for which l1 and l2 will be complex conjugates), it
is advantageous to choose w non-real.

Newton method in the complex q-plane.
Once a good approximation for a zero is found, we also compute

the phase e ih=l1/l2 [or equivalently, the number t defined by (4.8)].
Knowledge of h is very useful in trying to understand the topology of the
limiting curve.

4.2. Qualitative Structure of Eigenvalue-Crossing Curves

In this section we want to discuss the types of qualitative behaviors
that can arise when studying the eigenvalue-crossing curves. Recall first
(ref. 135, Chapter 2), that the eigenvalues li(q) of the transfer matrix T(q)
are analytic functions of q except possibly where two or more eigenvalues
collide. Indeed, this can be seen by expanding the characteristic polynomial
P(l, q)=det[lI−T(q)] around a root (l0, q0):

P(l, q)=a(l−l0)+b(q−q0)+c(l−l0)2+d(q−q0)2+e(l−l0)(q−q0)+· · ·
(4.24)

Provided that l0 is not a multiple eigenvalue of T(q0), we have a —
(“P/“l)(l0, q0) ] 0; the implicit function theorem then guarantees that in a
neighborhood of q=q0 there exists an analytic function l(q) solving
P(l(q), q)=0 with l(q0)=l0, and it has the convergent expansion

l(q)=l0−
b
a
(q−q0)+

abe−a2d−b3c
a3 (q−q0)2+O((q−q0)3). (4.25)

If, on the other hand, l0 is a k-fold eigenvalue of T(q0) with k \ 2,
then l(q) can have an l th-root branch point at q0 for any l [ k. More pre-
cisely, near q=q0 the eigenvalues divide into groups of cardinalities l1, ..., lM
(with l1+· · ·+lM=dim T) such that the eigenvalues of the i th group are
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the li distinct determinations of an analytic function of (q−q0)1/li, i.e. they
have an l thi -root branch point at q0 (ref. 135, pp. 65–66). For example, for
k=2 we have a=0 and c ] 0: if b ] 0, then a pair of eigenvalues l± (q)
bifurcate off l0 with a square-root branch point,

l± (q)=l0±1 −
b
c
21/2

(q−q0)1/2−
e
2c
(q−q0)+O((q−q0)3/2); (4.26)

while if b=0, then l± (q) are analytic functions in a neighborhood of q0,

l± (q)=l0+
−e±`e2−4cd

2c
(q−q0)+O((q−q0)2). (4.27)

4.2.1. Crossing of Two Simple Eigenvalues

Generically, the equimodularity of two eigenvalues defines an analytic
curve in the complex q-plane, along which the parameter h (or t) varies
smoothly. To see this, suppose that at q=q0 we have a pair of simple (i.e.
non-multiple) eigenvalues l1, 0 and l2, 0 that have equal modulus (|l1, 0 |=
|l2, 0 | ] 0); they satisfy l1, 0=e ihl2, 0 with h ] 0 (mod 2p). Each of these
eigenvalues then extends to a single-valued analytic function of q in a
neighborhood of q=q0, as in (4.25):

li(q)=li, 0−
bi

ai
(q−q0)+

aibiei−a
2
idi−b

3
ici

a3
i

(q−q0)2+O((q−q0)3) (4.28)

for i=1, 2. Their ratio is then

l1(q)
l2(q)

=e ih 51−1 b1

a1l1, 0
−

b2

a2l2, 0
2 (q−q0)+O((q−q0)2)6 (4.29a)

— e ih[1+re if(q−q0)+O((q−q0)2)] (4.29b)

Provided that r ] 0, the equimodularity locus |l1(q)/l2(q)|=1 defines near
q=q0 an analytic curve that passes through q=q0 at angle −f±p/2.

If, however, r=0 [i.e. the term in (4.29a) that is linear in q−q0

vanishes], then the equimodularity locus can have multiple points. (A suf-
ficient though not necessary condition for this to occur is for the linear
terms to vanish in each eigenvalue separately, i.e. b1=b2=0.) If the first
nonvanishing term in (4.29a) is the one of order (q−q0)k, then we have a
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k-fold multiple point in the sense of algebraic geometry (ref. 136, Section
6.2): that is, the equimodularity locus |l1(q)/l2(q)|=1 defines near q=q0

an analytic image of the set Re zk=0 near z=0. In particular, this set can
be interpreted locally as k analytic curves crossing at angles p/k.

Remark. Let us consider the partition function Zn(q) near a point q0

where there are exactly two dominant simple eigenvalues:

Zn(q)=a1(q) l1(q)n+a2(q) l2(q)n+· · · (4.30)

where the dots indicate the contributions of subdominant eigenvalues. Let
us assume for simplicity that a1(q0), a2(q0) ] 0 and insert the expansions

log
l1(q)
l2(q)

=2pik+A(q−q0)+O((q−q0)2) (4.31)

log
a1(q)
−a2(q)

=2piB+C(q−q0)+O((q−q0)2) (4.32)

where k — h/2p ¥ R and A, B, C ¥ C. [From (4.29) we have A=re if —

(b2/a2l2, 0)−(b1/a1l1, 0).] Then (4.30) can be written as

Zn(q)=2i[a1(q) a2(q) l1(q)n l2(q)n]1/2

× sinh 5pi(nk+B)+An+C
2

(q−q0)+O((q−q0)2)6, (4.33)

which agrees with ref. 56, eqn. (3.3), by trivial renaming of variables. When
n is large, (4.33) has zeros at

q=q0−
2pi
An

[k+B+R(nk)]+O(1/n2) (4.34)

where k ¥ Z is an arbitrary integer and R(x) — x− NxM is x modulo 1.
Therefore, we see that near a regular point q0 of the limiting curve B, the
finite-volume partition function Zn(q) has a sequence of evenly spaced
zeros [spacing = 2p/(|A|n)] lying parallel to B. These zeros lie a distance
2p |Im B|/(|A| n) away from B, hence converge to it generically at rate 1/n.

In addition to this generic behavior, there are other features exhibited
by the limiting curves that are worth studying in detail:
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4.2.2. Endpoints (Collision of Two Eigenvalues)

Suppose that l0 ] 0 is a two-fold eigenvalue of T(q0). Then generically
(i.e. if b ] 0) a pair of eigenvalues l± (q) bifurcates off l0 with a square-
root branch point, as in (4.26). The ratio of the two eigenvalues is

l+(q)
l− (q)

=1+A(q−q0)1/2+
A2

2
(q−q0)+O((q−q0)3/2) (4.35)

where A=(2/l0)(−b/c)1/2 ] 0. Setting

l+(q)
l− (q)

=e ih=
1+it
1−it

(4.36)

with t real, we see that the equimodularity locus is given by

q=q0−
4
A2 t

2+O(t4). (4.37)

Only even powers of t appear in this expansion, since l+ and l−

interchange roles as we go around the branch point, and l+/l−=e ih if and
only if l−/l+=e −ih. Writing A=re if, we see that the equimodularity
locus is an analytic curve ending at q=q0 and tangent there to the ray
arg(q−q0)=p−2f.

Because the two eigenvalues are equal at q=q0, the parameter h (or t)
takes the value 0 at endpoints. Each such endpoint corresponds to a simple
root of the t=0 resultant R̃0(q): indeed, (4.26) implies that for q near q0 we
have l+−l− ’ (q−q0)1/2 and hence R̃0(q) ’ (l+−l− )2 ’ q−q0. For this
reason, the simple zeros of the t=0 resultant play an essential role when
we try to determine with high accuracy the topology of the limiting curve.

By contrast, in the non-generic case b=0, where the eigenvalues l± (q)
are analytic functions in a neighborhood of q0 [cf. (4.27)], the formulae
(4.28)/(4.29) of the preceding subsection apply with h=0. In this case, the
root q=q0 is a double zero of the t=0 resultant R̃0(q), as l+−l− ’ q−q0

by (4.27), so that R̃0(q) ’ (l+−l− )2 ’ (q−q0)2.

Example. Consider a two-dimensional transfer matrix as in (4.9).
Collision of the two eigenvalues (4.13) occurs whenever P2(q)=0, i.e.
whenever tr2 T(q)=4 det T(q). Suppose this occurs at q=q0, with l0 —
l± (q0)=

1
2 tr T(q0), and let us expand the eigenvalues (4.13) around q=q0:

l±=
1
2 tr T(q0)±C1(q−q0)1/2+C2(q−q0)+O((q−q0)3/2) (4.38)
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where

C1=1
1
2

tr T(q0)
d tr T(q)
dq
:
q=q0

−
d det T(q)

dq
:
q=q0

21/2

(4.39a)

C2=
1
2
d tr T(q)
dq
:
q=q0

(4.39b)

The ratio of the two eigenvalues is therefore

l+(q)
l− (q)

=1+A(q−q0)1/2+
A2

2
(q−q0)+O((q−q0)3/2) (4.40)

with A=4C1/[tr T(q0)].

Remark. Let us return now to the general case, and consider the
partition function Zn(q) close to an endpoint q=q0 where two dominant
eigenvalues collide:

Zn(q)=a+(q) l+(q)n+a− (q) l− (q)n+· · · (4.41)

where the dots indicate the contributions of subdominant eigenvalues.
From (4.26) [cf. also (4.13)/(4.14)] we have

log
l+(q)
l− (q)

=A(q−q0)1/2+O(q−q0) (4.42)

log
a+(q)
−a− (q)

=2piB+C(q−q0)1/2+O(q−q0) (4.43)

where A=2(−b/c)1/2/l0. Then (4.41) can be written as

Zn(q)=2i[a+(q) a− (q) l+(q)n l− (q)n]1/2

× sinh 5 ipB+An+C
2

(q−q0)1/2+O(q−q0)6 . (4.44)
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When n is large, the zeros of (4.44) are given by

q=q0−
4p2(k+B)2

A2n2 +O(1/n3) (4.45)

where k ¥ Z, in agreement with (4.37). Therefore, the convergence close to
an endpoint is generically of order 1/n2, in contrast with the 1/n con-
vergence near a regular point of the limiting curve [cf. (4.34)].

4.2.3. Crossing of Three Simple Eigenvalues (T Points)

Suppose that at q=q0 we have three dominant simple eigenvalues (call
them l1, l2, l3): then three smooth curves of equimodularity, correspond-
ing to the three pairs of eigenvalues l1/2, l1/3, l2/3, pass through q=q0. One
half of each curve of equimodularity corresponds to a dominant pair of
eigenvalues, while one half corresponds to a subdominant pair; therefore
the locus of dominant equimodularity looks like a T, so we call these cros-
sings T points (see Fig. 1). They are complex analogues of ‘‘triple points’’ in
the thermodynamic sense (but they are not multiple points in the sense of
algebraic geometry: see Remark 2 below).

Fig. 1. Schematic representation of a generic T point where three eigenvalues l1, l2, l3 are
simultaneously dominant. The solid black lines represent the loci of dominant eigenvalue
crossings, while the dashed grey lines represent the loci of subdominant eigenvalue crossings.
Each line has been labeled by the inequalities and equalities it satisfies, and each region has
been labeled by the inequalities it satisfies.
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More precisely, the eigenvalues li(q) for i=1, 2, 3 define single-valued
analytic functions (4.28) in a neighborhood of q0, so that their ratios are

l1(q)
l2(q)

=
l1, 0

l2, 0
51−1 a1

b1l1, 0
−

a2

b2l2, 0
2 (q−q0)+O((q−q0)2)6 (4.46a)

l1(q)
l3(q)

=
l1, 0

l3, 0
51−1 a1

b1l1, 0
−

a3

b3l3, 0
2 (q−q0)+O((q−q0)2)6 (4.46b)

l2(q)
l3(q)

=
l2, 0

l3, 0
51−1 a2

b2l2, 0
−

a3

b3l3, 0
2 (q−q0)+O((q−q0)2)6 (4.46c)

Provided that the coefficients of q−q0 in (4.46a–c) are not collinear, there
are six possible phases for q−q0 that render one of the ratios unimodular
to leading order in q−q0; three of these correspond to a dominant crossing,
while the three complementary phases correspond to a subdominant cross-
ing. If, on the curve where |li/lj |=1, we define

li(q)
lj(q)

=e ihij(q), (4.47)

then the phase hij(q) varies smoothly along this curve. No pair of these
three phases obeys in general any relation, even as qQ q0; but at the T
point we obviously have the relation

h12+h23+h31=2pn (4.48)

for some integer n. If we take −p < hij [ p, then n must be −1, 0 or +1.
In particular, the absolute values of the hij (which are what we actually
calculate in practice) must satisfy either |h12 |+|h23 |+|h31 |=2p or some
permutation of |h12 |+|h23 |− |h31 |=0. In practice, one way of detecting a T
point is by noticing the discontinuity in h as we pass from one piece of the
limiting curve to another.

Remarks. 1. We frequently find that the limiting curve B contains
an arc starting at an endpoint (t=0) and ending at a T point (t=t0).30 If we

30 Similar features were found in the complex-temperature zeros of the two-dimensional spin-s
Ising model, (137) in the complex-temperature zeros of the Potts model on the hexagonal,
Kagomé and triangular lattices, (15, 16) and in the complex-q zeros of the Potts antiferromag-
net on some families of strip graphs. (20)

are able to compute the t=0 resultant, then all endpoints can be detected,
so that the corresponding arcs can be detected as well. But using the direct-
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search method, a short arc can easily be overlooked: for since the param-
eter t grows smoothly as we move along the arc towards the T point, a
short arc corresponds to a small value of t0; and if t0 is smaller than our
step size, we may fail to detect the discontinuity in t along the other two
arcs merging at the T point (unless we are very lucky!). This means that in
the cases where we were unable to obtain the zeros of the t=0 resultant
(namely, widths 7F and 8F), we may have missed some such ‘‘close pairs’’
of endpoints and T points; so the lists of endpoints and T points reported
in Sections 5.6 and 5.7 may be incomplete, and the counts reported in
Table 5 must be understood as lower bounds on the true value.

2. Roček, Shrock and Tsai (ref. 17, p. 528 top, item (ii)) state erro-
neously that a T point is a ‘‘multiple point’’ in the technical sense of alge-
braic geometry, i.e. a point where two or more branches of the same irre-
ducible algebraic curve meet. In fact, a T point corresponds to the crossing
in modulus of three usually unrelated analytic functions. Our aim here is not
to quibble about definitions, but to emphasize a radical difference in
behavior: at a k-fold multiple point the branches always intersect at angles
p/k, while at a T point they can (and in general do) intersect at arbitrary
angles. (By contrast, the crossing (4.29) with r=0 is a true multiple point,
as correctly observed by Roček et al. (ref. 17, p. 528 top, item (i)).)

4.3. Computation of Isolated Limiting Points of Zeros

According to case (a) of the Beraha–Kahane–Weiss theorem, the
isolated limiting points of partition-function zeros correspond to points
where there is a unique dominant eigenvalue whose amplitude vanishes. We
locate such points by a two-step process: First we determine, using Lem-
ma 2.2, the (finite) set of q values where at least one amplitude vanishes.
Then we check these q values one by one, by diagonalizing T(q), rotating
the left and right vectors uF(q) and vF(q), and checking whether the vanishing
amplitude(s) corresponds to the dominant eigenvalue. In the special case
dim T=2, we can test dominance using the analytic criterion (4.22).

5. NUMERICAL RESULTS FOR THE SQUARE-LATTICE CHROMATIC

POLYNOMIAL: FREE TRANSVERSE BOUNDARY CONDITIONS

We have computed the transfer matrix T(q) and the limiting curves B
for square-lattice strips of widths 2 [ Lx [ 8 with free boundary conditions

652 Salas and Sokal



in the transverse direction. We have checked the self-consistency of our
finite-lattice results using the trivial identity

Z(mF×nF)=Z(nF×mF) (5.1)

for all pairs 2 [ m, n [ 8.

5.1. Lx=2F

In this case the transfer matrix is one-dimensional, and the result is
trivial:

Z(2F×nF)=q(q−1)(q2−3q+3)n−1. (5.2)

Since there is only one eigenvalue, there is obviously no crossing, hence
B=”. However, there are zeros for all n at q=0, 1 (trivially) and for all
n \ 2 at q=(3±`3 i)/2.

5.2. Lx=3F

In this case the transfer matrix is two-dimensional. The allowed parti-
tions are given by P={1, d13}. In this basis the transfer matrix is equal to31

31 As was found a quarter of a century ago by Biggs and Meredith (ref. 112, p. 11).

T(3F)=1
q3−5q2+10q−8 q2−4q+5

1 q−2
2 , (5.3)

and the partition function is equal to

Z(3F×nF)=q(q−1) 1
q−1

1
2T ·T(3F)n−1 ·1

1

0
2 (5.4)

where T denotes transpose.
We can rewrite the above expression for the partition function as in

(4.12). The polynomials P1, P2, P3 and P4 entering the definitions of the
eigenvalues and amplitudes (4.13)/(4.14)/(4.20) are given by
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Fig. 2. Zeros of the partition function of the q-state Potts antiferromagnet on the square
lattices 3F×15F (squares), 3F×30F (circles) and 3F×.F (solid line). The isolated limiting
zeros are depicted by a × . The limiting curve was computed using the resultant method.

P1(q)=(q2−3q+5)(q−2) (5.5a)

P2(q)=(q2−5q+7)(q4−5q3+11q2−12q+8) (5.5b)

P3(q)=q(q−1)(q4−6q3+14q2−15q+8) (5.5c)

P4(q)=q2(q−1)2 (q−2) (5.5d)

The limiting curve B (see Fig. 2) consists of three disjoint arcs.32 One

32 This curve is also depicted in ref. 17, Fig. 3(a).

of them crosses the real axis at q0=2, and is invariant under complex
conjugation; the other two lie in the first and fourth quadrants, respec-
tively, and are complex conjugates of each other. There are six endpoints:

q % 0.5865699800±1.1400627519 i (5.6a)

q % 1.9134300200±1.0979688996 i (5.6b)

q=
5±`3 i

2
% 2.5±0.8660254038 i (5.6c)
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These endpoints are the six roots of the t=0 resultant R̃0(q)=−P2(q)
given by (5.5b).

The zeros of the amplitudes can be found by solving the equation
P4(q)=0. There are two trivial zeros q=0, 1, where both amplitudes
vanish simultaneously; both these zeros lie in the region where the eigen-
value l− is dominant. The non-trivial zero q=B4=2 is a zero of a− , but
not of a+ [a+(q=2)=2]. However, this point happens to lie on an
dominant-eigenvalue-crossing curve [l+(q=2)=−l− (q=2)=1], so it
actually belongs to case (b) of the Beraha–Kahane–Weiss theorem. Indeed,
from Table 3 we see that the first non-trivial real zero of the partition
function seems to converge to q=2, but at the slow (roughly 1/n) rate
characteristic of non-isolated limiting points rather than at the fast (expo-
nential) rate characteristic of isolated limiting points.

5.3. Lx=4F

The transfer matrix is three-dimensional. In the basis P=
{1, d13+d24, d14} it can be written as

T(4F)=

Rq
4−7q3+21q2−32q+21 2(q3−6q2+14q−12) q3−7q2+19q−20

q−2 q2−4q+5 3−q

−1 −2(q−2) q2−5q+7

S ,
(5.7)

and the partition function is equal to

Z(4F×nF)=q(q−1) R
(q−1)2

2(q−1)

q−2

ST ·T(4F)n−1 ·R
1

0

0

S . (5.8)

The limiting curve B (see Fig. 3) has three connected components:
again, one crosses the real axis and is self-conjugate, while the other two
stay away from the real axis and are a pair of mutually conjugate arcs.33

33 This curve is also depicted in ref. 17, Fig. 3(b).

This time, however, the component that crosses the real axis is rather
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Table 3. Real Zeros of the Chromatic Polynomials of Finite Square-Lattice Strips

with Free Boundary Conditions in Both Directions, to 12 Decimal Placesa

Lattice 3rd Zero 4th Zero 5th Zero 6th Zero

3F ×3F 1.646039212420
3F ×6F
3F ×9F 1.862295803794
3F ×12F
3F ×15F 1.910244567418
3F ×18F
3F ×21F 1.932253338339
3F ×24F
3F ×27F 1.945103511556
3F ×30F

4F ×4F
4F ×8F
4F ×12F 2.000607664038 2.183434328589
4F ×16F 2.000017521546 2.226186181588
4F ×20F 2.000000515361 2.248253640526
4F ×24F 2.000000015170 2.261494080470
4F ×28F 2.000000000447 2.270172437566
4F ×32F 2.000000000013 2.276213662199
4F ×36F 2.000000000000 2.280609243979
4F ×40F 2.000000000000 2.283918256290
4F ×100F 2.000000000000 2.236070288638 2.284202920228 2.297805980307

5F ×5F 1.955073615801
5F ×10F 2.000022457863 2.243311545349
5F ×15F 1.999999994509
5F ×20F 2.000000000001 2.335823711578
5F ×25F 2.000000000000
5F ×30F 2.000000000000 2.365828458342
5F ×35F 2.000000000000
5F ×40F 2.000000000000 2.381070502769
5F ×45F 2.000000000000
5F ×50F 2.000000000000 2.390328275726

6F ×6F 2.001381451484 2.196830038914
6F ×12F 2.000000000760 2.390498998123
6F ×18F 2.000000000000 2.448434501424
6F ×24F 2.000000000000 2.475714120608
6F ×30F 2.000000000000 2.491245543049
6F ×36F 2.000000000000 2.501126630104
6F ×42F 2.000000000000 2.507892809644
6F ×48F 2.000000000000 2.512775536891
6F ×54F 2.000000000000 2.516440469487
6F ×60F 2.000000000000 2.519276871603
6F ×240F 2.000000000000 2.534921463459

7F ×7F 1.999994176430
7F ×14F 2.000000000000 2.451966225086
7F ×21F 2.000000000000
7F ×28F 2.000000000000 2.523291736983
7F ×35F 2.000000000000
7F ×42F 2.000000000000 2.548814353555
7F ×49F 2.000000000000
7F ×56F 2.000000000000 2.562226841180
7F ×63F 2.000000000000
7F ×70F 2.000000000000 2.570504933475

8F ×8F 2.000000005426 2.391719919086
8F ×16F 2.000000000000 2.531414423190
8F ×24F 2.000000000000 2.576747844784
8F ×32F 2.000000000000 2.597790566370
8F ×40F 2.000000000000 2.609001821476
8F ×48F 2.000000000000 2.614901253573
8F ×56F 2.000000000000 2.617322619879
8F ×64F 2.000000000000 2.617921204353
8F ×72F 2.000000000000 2.618018253506
8F ×80F 2.000000000000 2.618031848556

Beraha 2 2.618033988750

a A blank means that the zero in question is absent. The first two real zeros q=0, 1 are exact
on all lattices. ‘‘Beraha’’ indicates the Beraha numbers B4=2 and B5=(3+`5)/2.
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Fig. 3. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 4F×20F (squares), 4F×40F (circles) and 4F×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.

complicated: there is a pair of T points at q % 2.327±0.9113 i, and there is
a double point on the real axis at q % 2.2649418565.

There are ten endpoints:

q % 0.3254743549±1.1048503376 i (5.9a)

q % 2.0555822564±1.5703029256 i (5.9b)

q % 2.2283590792 (5.9c)

q % 2.2823594125±1.5512247035 i (5.9d)

q % 2.3014157308 (5.9e)

q % 2.6674264726±0.7845284722 i (5.9f)

The horizontal segment emerging from the double point ends at the
pair of real endpoints (5.9c,e).

Using Lemma 2.2 we find that the points where at least one amplitude
vanishes are given by the zeros of the polynomial

det D(q)=2q3(q−1)3 (q−2)2 (q2−3q+1)(2q3−13q2+27q−17)2 .(5.10)

Transfer Matrices and Partition-Function Zeros 657



Fig. 4. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 4F×.F. (a) Region near the double point q % 2.2649418565. The value of t is continu-
ous around the double point, with t % 0.0621. (b) Region near the T point q % 2.327+0.9113 i.
At this T point we have t % (1.818, 12.962, 0.655) and hence h % (2.136, 2.988, 1.160), so that
; h=2p.

The values q=0, 1 are trivial zeros where all three amplitudes vanish
simultaneously. At q=2 the amplitude corresponding to the leading
eigenvalue vanishes (as does one of the two subdominant amplitudes). The
other roots q=(3± `5)/2 and q % 1.170516, 2.664742±0.401127 i all
correspond to the vanishing of a subdominant amplitude. Therefore,
according to case (a) of the Beraha–Kahane–Weiss theorem, the isolated
limiting points for this strip are q=0, 1, 2.

From Table 3, we see that the first non-trivial real zero converges
rapidly to the Beraha number B4=2. In addition, there are further real
zeros (whose number increases with n) that tend to the segment
[2.2283590792..., 2.3014157308...] of the limiting curve and in the limit
nQ. become dense on that segment.

It is curious that (5.10) vanishes also at the Beraha number
B5=(3+`5)/2 and its conjugate Bg

5=(3−`5)/2, even though both of
these correspond to the vanishing of a subdominant amplitude.
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5.4. Lx=5F

The transfer matrix is seven-dimensional, and can be expressed in
the basis P={1, d13+d35, d24, d14+d25, d15, d135, d15d24}. We refrain
from giving here the full transfer matrix; instead, we refer the reader to the
Mathematica file transfer1.m included in the electronic version of this
article at xxx.lanl.gov.

The limiting curve B (see Fig. 5) has five connected components. One
of them crosses the real axis at q0 % 2.4284379020 and is a self-conjugate
arc; there is a pair of mutually conjugate arcs; and finally, there is a pair of
mutually conjugate components exhibiting T points at q % 2.423±
0.1067 i and q % 2.291±1.561 i.

There are 14 endpoints:

q % 0.1708973690±1.0464583589 i (5.11a)

q % 1.9065720451±1.9339587717 i (5.11b)

q % 1.9748200483±1.9395387106 i (5.11c)

Fig. 5. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 5F×25F (squares), 5F×50F (circles) and 5F×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.
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q % 2.3024178902±1.6190810539 i (5.11d)

q % 2.3990745384±0.8206408701 i (5.11e)

q % 2.4983799650±0.8199051472 i (5.11f)

q % 2.7692051339±0.7143320949 i (5.11g)

Please note that the endpoints q % 1.9065720451±1.9339587717 i and
q % 1.9748200483±1.9395387106 i define a pair of small gaps in the limit-
ing curve. Likewise, the curves emerging from the endpoints q %
2.3024178902±1.6190810539 i and q % 2.3990745384±0.8206408701 i do
not cross, but define another pair of very small gaps (see Fig. 6 for detail).

By Lemma 2.2, the points where at least one amplitude vanishes are
given by the zeros of the polynomial

det D(q)=q7(q−1)13(q−2)6(q2−3q+1)5(q−3)7P(q)2 (5.12)

Fig. 6. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 5F×.F. Region near the T points of the limiting curve. On the upper T point q %
2.291+1.561 i, we have t % (0.999, 0.179, 1.434), corresponding to h % (1.569, 0.354, 1.924).
On the lower T point q % 2.423+0.1067 i, we have t % (1.823, 0.434, 0.774) with h %
(2.138, 0.820, 1.318).
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where P(q) is a polynomial of degree 37 with integer coefficients that we
report in the file transfer1.m; as far as we can tell, P(q) cannot be
factored further over the integers. The values q=0, 1 are trivial zeros
where all seven amplitudes vanish simultaneously. (Two of the amplitudes
have in fact multiple roots at q=1.) At q=2 the amplitude corresponding
to the leading eigenvalue vanishes (as do the amplitudes of five of the six
subdominant eigenvalues). In addition, one complex-conjugate pair of
zeros of P(q), namely q % 2.2866147868±1.0116506019 i, corresponds to
the vanishing of a dominant amplitude (shown with a × in Fig. 5). This is
the first time we find a nonreal isolated limiting zero. The remaining zeros
of det D(q) correspond to the vanishing of subdominant amplitudes.

The first non-trivial real zero (see Table 3) converges quickly to the
Beraha number B4=2. The next real zero appears to be converging slowly
(at a roughly 1/n rate) to the value q0 % 2.4284379020 where the limiting
curve B intersects the real axis, which is smaller than the next Beraha
number B5. The convergence to the complex isolated limiting points at
q % 2.2866147868±1.0116506019 i is quite again rapid. Indeed, if we select
for each strip length n the zero closest to the limiting point, and fit the dis-
tance from the limiting point to an inverse power of n, the effective power
seems to grow with n; this is compatible with the expected exponential
convergence.

It is curious that (5.12) vanishes also at the Beraha numbers
B5=(3+`5)/2andB6=3—andhencealsoattheconjugateBg

5=(3−`5)/2
—even though all of these correspond to the vanishing of a subdominant
amplitude.

5.5. Lx=6F

The transfer matrix is 13-dimensional; it can be found in the
Mathematica file transfer1.m.

The limiting curve B (see Fig. 7) has five connected components. One
of the components is self-conjugate and crosses the real axis with a double
point at q % 2.5328721401, from which there emerges a small horizontal
segment running from 2.5286467909 « q « 2.5370979311 (see Fig. 8a for
detail). The other four connected components form two mutually conjugate
pairs.Onepairconsistsofarcsrunningfromq % 0.0689480595±0.9874383424 i
to q % 1.6648104050±2.1404062947 i. The other pair exhibits T points at
q % 2.039±1.964 i, q % 2.332±1.638 i and q % 2.478±1.213 i, the latter of
which is the end of a small bulb-like region enclosed by the limiting curve
(see Fig. 8b,c). There are two small gaps at q % 1.67±2.14 i.
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Fig. 7. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 6F×30F (squares), 6F×60F (circles) and 6F×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.

There are 14 endpoints:

q % 0.0689480595±0.9874383424 i (5.13a)

q % 1.6648104050±2.1404062947 i (5.13b)

q % 1.6870381566±2.1423501191 i (5.13c)

q % 2.0370674106±1.9742433636 i (5.13d)

q % 2.3334923547±1.6492963460 i (5.13e)

q % 2.5286467909 (5.13f)

q % 2.8373380200±0.6533586125 i (5.13g)

q % 2.5370979311 (5.13h)

The bulb-like region is rather unusual. The point at which it starts,
q % 2.478±1.213 i, really is a T point: computations show that each of the
three curves of dominant equimodularity arriving at the T point has a
smooth continuation into the region beyond the T point, where it becomes
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Fig. 8. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 6F×.F. (a) Region around the double point at q % 2.53287. The value of t is continu-
ous around this double point, with t % 0.00985. (b) Region containing the three T points. On
the upper T point q % 2.039+1.964 i, we have t % (0.871, 0.0521, 0.970) with h % (1.434, 0.104,
1.540); on the middle T point q % 2.332+1.638 i, we have t % (18.021, 0.0843, 7.119) and
h % (3.031, 0.168, 2.863); on the lower T point q % 2.478+1.213 i, we have t % (0.272, 0.618,
1.069) and h % (0.532, 1.107, 1.638). (c) Detail of the bulb-like region around q % 2.478+
1.213 i. Dominant crossing curves are depicted in solid black lines, while subdominant cross-
ing curves are shown with dashed grey lines.
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a curve of subdominant equimodularity (see Fig. 8c, where the dominant
curves are shown with solid black lines and the subdominant curves with
dashed grey lines); moreover, the t value varies continuously along each of
these three curves. One of the subdominant curves lies entirely within the
enclosed bulb-like region and ends at a t=0 subdominant endpoint
q % 2.5018915620±1.1501464506 i. This means that there is a branch cut
for these two subdominant eigenvalues, which become the dominant
eigenvalues outside the bulb-like region.

By Lemma 2.2, the points where at least one amplitude vanishes are
given by the condition det D(q)=0. This determinant can be written as

detD(q)=q13(q−1)23 (q−2)12 (q2−3q+1)8 (q−3)27 (q3−5q2+6q−1) P(q)2

(5.14)

where P(q) is a polynomial of degree 218 with integer coefficients that we
report in the file transfer1.m. There are two trivial zeros q=0, 1 where
all the amplitudes vanish simultaneously. There are five non-trivial zeros of
det D(q) that correspond to the vanishing of the dominant amplitude: q=2,
q % 2.0617791396 ± 1.7315562279 i, q % 2.3406021969 ± 1.3825644365 i
(shown with a × in Fig. 7).

The first non-trivial real zero converges rapidly to the Beraha number
B4=2 (see Table 3), while the second non-trivial zero appears to be con-
verging (at a roughly 1/n2 rate) to the real endpoint q % 2.5286467909. We
expect that there will be further real zeros (whose number increases with n)
that tend to the segment [2.5286467909..., 2.5370979311...] of the limiting
curve and in the limit nQ. become dense on that segment. The con-
vergence to the complex isolated limiting points at q % 2.0617791396
±1.7315562279 i and q % 2.3406021969±1.3825644365 i is in both cases
very fast and is compatible with an exponential rate.

It is curious that (5.14) vanishes also at the Beraha numbers B5=
(3+`5)/2, B6=3 and B7 % 3.246979603717—and hence also at their con-
jugates Bg

5=(3−`5)/2, B (2)
7 % 1.5549581321 and B (3)

7 % 0.1980622642—
though all of these correspond to the vanishing of a subdominant ampli-
tude.

5.6. Lx=7F

The transfer matrix is 32-dimensional; it can be found in the
Mathematica file transfer1.m.

The limiting curve B (see Fig. 9) appears to have seven connected
components (but there may be more: we cannot be sure, as we were unable
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Fig. 9. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 7F×35F (squares), 7F×70F (circles) and 7F×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the direct-search method.

to compute the t=0 resultant). One of these components is a self-conjugate
arc, and crosses the real axis at q0 % 2.6062482130; it has endpoints at
q % 2.622974±0.609548 i. The other six components form three mutually
conjugate pairs. One pair consists of arcs running from q % −0.002412
±0.933080 i to q % 1.425603±2.248902 i. A very small gap (see Fig. 10a
for detail) separates these arcs from the second pair, which starts at the
endpoint q % 1.433184±2.248834 i and ends in a tiny bulb-like region with
a T point at q % 2.415±1.497 i (see Fig. 10b). A small gap (see Fig. 10c)
separates these components from the third pair, which exhibits T points at
q % 2.577±1.133 i and endpoints at q % 2.616006±0.616910 i; the latter is
in turn separated by a very small gap from the self-conjugate arc (see
Fig. 10d).

Please note that B enters for the first time into the half-plane Re q < 0;
we conjecture that this occurs for all lattice widths Lx \ 7F.

There are probably 14 endpoints:

q % −0.002412±0.933080 i (5.15a)

q % 1.425603±2.248902 i (5.15b)
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Fig. 10. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 7F×.F. (a) Region around the gap between q % 1.425603+2.248902 i and
q % 1.433184+2.248834 i. (b) Bulb-like region around the T point q % 2.415+1.497 i. At this
point we have t % (0.023, 1.248, 1.310) and h % (0.047, 1.791, 1.838). (c) Region around the
gap between the bulb-like region at q % 2.415+1.497 i and the endpoint at
q % 2.445207±1.471332 i. There is also a T point at q % 2.577+1.133 i, where
t % (2.108, 2.737, 1.016) and h % (2.257, 2.441, 1.586). (d) Region around the gap between
q % 2.616006+0.616910 i and q % 2.622974+0.609548 i.
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q % 1.433184±2.248834 i (5.15c)

q % 2.445207±1.471332 i (5.15d)

q % 2.616006±0.616910 i (5.15e)

q % 2.622974±0.609548 i (5.15f)

q % 2.886041±0.602908 i (5.15g)

We have determined these endpoints by the direct-search method; there-
fore, they are less accurate than endpoints computed by the resultant
method, and the list is possibly incomplete.

Due to limitations of CPU time, we were unable to obtain the explicit
expression for det D(q) as a polynomial in q; we were therefore unable to
obtain all its roots. Instead, we evaluated det D(q) numerically at selected
values of q. In particular, motivated by the results of the preceding subsec-
tions, we computed det D(q) numerically at the first 50 Beraha numbers;
and in those cases where det D(q)=0, we numerically diagonalized the
transfer matrix in order to ascertain which amplitude(s) are the one(s) that
vanish. We find two trivial zeros q=0, 1 where all the amplitudes vanish
simultaneously, and one non-trivial real zero q=2 where the dominant
amplitude vanishes (along with others). In addition, det D(q) vanishes at
the Beraha numbers B5=(3+`5)/2, B6=3, B7 % 3.246979603717 and
B8=2+`2 (and hence also at their conjugates); these all correspond to
the vanishing of a subdominant amplitude. Finally, inspection of Fig. 9
suggests the existence of at least two pairs of complex-conjugate isolated
limiting points, q % 2.48873±0.75416 i and q % 1.65436±2.01881 i; and we
confirm that the absolute value of the dominant amplitude is very small in
both cases (2.9×10 −11 and 2.1×10 −6, respectively), suggesting that this
amplitude does indeed have a zero nearby. There might exist further
isolated limiting points not found here.

The first non-trivial real zero converges quickly to the Beraha number
B4=2 (see Table 3), and the next real zero converges (at a roughly 1/n
rate) to the value of q0 % 2.6062482130 for this lattice, which is slightly
smaller than the Beraha number B5.

5.7. Lx=8F

The transfer matrix is 70-dimensional; it can be found in the
Mathematica file transfer1.m.

The limiting curve B (see Fig. 11) appears to consist of six connected
components that form three mutually conjugate pairs (but there may be
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more). One pair is defined by arcs running from q % −0.054426±
0.884363 i to q % 1.211959±2.301760 i. A very small gap (see Fig. 12a)
separates these arcs from the second pair of arcs, which run from
q % 1.214531±2.301385 i to q % 2.326565±1.753667 i. Another small gap
(see Fig. 12b) separates these arcs from the third pair of components, which
run from q % 2.330755±1.737504 i to q % 2.660260±0.001257 i and also
have T points at q % 2.640±1.114 i (see Fig. 12c). Note that the limiting
curve does not cross the real axis: the closest approach is
q % 2.660260±0.001257 i (see Fig. 12d).

There are probably 14 endpoints:

q % −0.054426±0.884363 i (5.16a)

q % 1.211959±2.301760 i (5.16b)

q % 1.214531±2.301385 i (5.16c)

q % 2.326565±1.753667 i (5.16d)

Fig. 11. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 8F×40F (squares), 8F×80F (circles) and 8F×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the direct-search method.
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Fig. 12. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 8F×.F. (a) Region around the small gap at q % 1.21+2.30 i. (b) Region around the
gap at q % 2.32+1.75 i. (c) Region around the T point at q % 2.640+1.114 i. At this point we
have t % (0.993, 1.013, 0.0113) and h % (1.563, 1.584, 0.023). (d) Region around the tiny gap at
q % 2.660260.

q % 2.330755±1.737504 i (5.16e)

q % 2.660260±0.001257 i (5.16f)

q % 2.921658±0.560969 i (5.16g)

We have again determined these endpoints by the direct-search method.
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Once again we were unable to compute the determinant det D(q) as a
polynomial in q, so we followed the same numerical method as in
Section 5.6 to locate at least some of the isolated limiting points. There are
of course two trivial isolated real zeros at q=0, 1 where all the amplitudes
vanish simultaneously. In addition, det D(q) vanishes at the Beraha
numbersB4=2,B5=(3+`5)/2,B6=3,B7 % 3.246979603717,B8=2+`2
and B9 % 3.5320888862 (and hence also at their conjugates). Unfortunately,
we were unable to compute the corresponding amplitudes: even using 4000-
digit numerical precision, the inverse of the change-of-basis matrix was
obtained with no precision at all! Nevertheless, by inspection of Fig. 9 we
can guess that B4 and B5 are indeed isolated limiting points (see also the
discussion below about the rate of convergence to those points), while
B6, B7, B8, B9 are not. Inspection of Fig. 9 also suggests that there are two
possible pairs of complex-conjugate isolated limiting points, namely
q % 1.33321±2.15164 i and q % 2.39242±1.11180 i; but we are again
unable to confirm this by a direct evaluation of the amplitudes at those
points.

The convergence of the first non-trivial real zero to B4=2 is very
rapid (see Table 3). The second non-trivial real zero converges fairly
rapidly to the Beraha number B5=(3+`5)/2, which lies slightly below
the point q % 2.66 where the limiting curve comes close to (but does not
cross) the real axis. This rapid convergence suggests that B4 and B5 are
indeed isolated limiting points. This is the first square-lattice strip with free
b.c. for which B5 appears as an isolated limiting point.

6. NUMERICAL RESULTS FOR THE SQUARE-LATTICE CHROMATIC

POLYNOMIAL: PERIODIC TRANSVERSE BOUNDARY CONDITIONS

We have also computed the transfer matrix T(q) and the limiting
curves B for square-lattice strips of widths 2 [ Lx [ 8 with periodic
boundary conditions in the transverse direction. We have checked our
results for widths 2 [ mP [ 8 and lengths nF=2, 3 by comparing to the
results of Biggs–Damerell–Sands (110) (resp. Shrock–Tsai (24, 29)) for width
nF=2 (resp. nF=3) and length mP, using the trivial identity

Z(mP×nF)=Z(nF×mP). (6.1)

6.1. Lx=2P

This is of course identical to Lx=2F (Section 5.1).
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6.2. Lx=3P

This case is also trivial, as the transfer matrix is one-dimensional. The
result is

Z(3P×nF)=q(q−1)(q−2)(q3−6q2+14q−13)n−1 (6.2)

The dominant-eigenvalue-crossing curve is of course the empty set B=”.
However, there are zeros for all n at q=0, 1, 2 (trivially) and for all n \ 2
at q % 1.7733011742±1.4677115087 i and q % 2.4533976515.

6.3. Lx=4P

The transfer matrix is two-dimensional. In the basis P={1, d13+d24}
it can be written as

T(4P)=1
q4−8q3+28q2−51q+41 2(q3−6q2+14q−12)

2q−5 q2−4q+5
2, (6.3)

and the partition function is equal to

Z(4P×nF)=q(q−1) 1
q2−3q+3

2(q−1)
2T ·T(4P)m−1 ·1

1

0
2 . (6.4)

The eigenvalues of the transfer matrix T(4P) and their corresponding
amplitudes are given by (4.13)/(4.14)/(4.20) with34

34 Our results are in agreement with those of ref. 19, eqns. (7.1)–(7.4). In particular, we have
bsq(4), c, 1=− tr T and bsq(4), c, 2=det T.

P1(q)=q4−8q3+29q2−55q+46 (6.5a)

P2(q)=q8−16q7+118q6−526q5+1569q4−3250q3+4617q2

−4136q+1776 (6.5b)

P3(q)=q(q−1)(q6−11q5+54q4−152q3+266q2−277q+128) (6.5c)

P4(q)=2q2(q−1)2(q−2)(q2−3q+1)(2q−5)2 (6.5d)

The limiting curve B (see Fig. 13) contains three pieces.35 It crosses the

35 This curve is also depicted in ref. 19, Fig. 3(a).

real axis at the double point q % 2.3026282864 (with t % 0.092), from which
there emerges a horizontal segment running from q % 2.2533697671 to
q % 2.3516882809.
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Fig. 13. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 4P×20F (squares), 4P×40F (circles) and 4P×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.

There are eight endpoints given by the zeros of the resultant at t=0
[=−P2(q)]:

q % 0.7098031013±2.0427103451 i (6.6a)

q % 1.9923366166±1.5941556425 i (6.6b)

q % 2.2533697671 (6.6c)

q % 2.3516882809 (6.6d)

q % 2.9953312581±1.4266372190 i (6.6e)

The zeros of the amplitudes can be found by solving P4(q)=0. There
are trivial zeros q=0, 1, where both amplitudes vanish simultaneously;
both these zeros lie in the region where the eigenvalue l+ is dominant.
There are five non-trivial zeros: q=2, 5/2 (double) and (3± `5)/2. All of
them lie in regions where there is a unique dominant eigenvalue; but only
for q=2 does the amplitude corresponding to the dominant eigenvalue
vanish. The Beraha–Kahane–Weiss theorem thus implies that the isolated
limiting points of zeros are precisely q=0, 1, 2. From Table 4 we see that
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Table 4. Real Zeros of the Chromatic Polynomials of Finite Square-Lattice Strips

with Periodic Boundary Conditions in the Transverse Direction and Free Boundary

Conditions in the Longitudinal Direction, to 12 Decimal Placesa

Lattice 3rd Zero 4th Zero 5th Zero 6th Zero 7th Zero 8th Zero

4P ×4F

4P ×8F 2.000937646653 2.233582851404
4P ×12F 2.000011295331 2.285151240169
4P ×16F 2.000000139385 2.307528225343
4P ×20F 2.000000001721 2.319813608989
4P ×24F 2.000000000021 2.327431319510
4P ×28F 2.000000000000 2.332533058471
4P ×32F 2.000000000000 2.336139224928
4P ×36F 2.000000000000 2.338792911735
4P ×40F 2.000000000000 2.340807853864
4P ×100F 2.000000000000 2.257013014819 2.270836682396 2.325455510831 2.341961199927 2.349426156978

5P ×5F 2
5P ×10F 2 2.579692798743
5P ×15F 2
5P ×20F 2 2.615053742246
5P ×25F 2 2.618482995587 2.643045814623
5P ×30F 2 2.617994992234
5P ×35F 2 2.618037696771 2.658908973824
5P ×40F 2 2.618033639521
5P ×45F 2 2.618034021676 2.666710728680
5P ×50F 2 2.618033985646

6P ×6F 2.000004484676 2.407498857052
6P ×12F 2.000000000000 2.516516196247
6P ×18F 2.000000000000 2.551495362906
6P ×24F 2.000000000000 2.568645710453
6P ×30F 2.000000000000 2.578747609077
6P ×36F 2.000000000000 2.585363032613
6P ×42F 2.000000000000 2.590008147965
6P ×48F 2.000000000000 2.593435585192
6P ×54F 2.000000000000 2.596060266523
6P ×60F 2.000000000000 2.598129161537
6P ×240F 2.000000000000 2.610780621890

7P ×7F 2
7P ×14F 2 2.617937723253
7P ×21F 2 2.618034017737 2.721810707015
7P ×28F 2 2.618033988741
7P ×35F 2 2.618033988750 2.748882762812
7P ×42F 2 2.618033988750
7P ×49F 2 2.618033988750 2.760230036513
7P ×56F 2 2.618033988750
7P ×63F 2 2.618033988750 2.766499503035
7P ×70F 2 2.618033988750

8P ×8F 2.000000000001 2.551072878420
8P ×16F 2.000000000000 2.616714700486
8P ×24F 2.000000000000 2.618032009068
8P ×32F 2.000000000000 2.618033986108
8P ×40F 2.000000000000 2.618033988746
8P ×48F 2.000000000000 2.618033988750
8P ×56F 2.000000000000 2.618033988750
8P ×64F 2.000000000000 2.618033988750
8P ×72F 2.000000000000 2.618033988750
8P ×80F 2.000000000000 2.618033988750

Beraha 2 2.618033988750

a A blank means that the zero in question is absent. The first two real zeros q=0, 1 are exact
on all lattices; the third real zero q=2 is exact on all lattices of odd width. ‘‘Beraha’’ indi-
cates the Beraha numbers B4=2 and B5=(3+`5)/2.
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Fig. 14. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 5P×25F (squares), 5P×50F (circles) and 5P×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.

the first non-trivial real zero does indeed converge rapidly to the Beraha
number B4=2. In addition, there are further real zeros (whose number
increases with n) that tend to the segment [2.2533697671...,
2.3516882809...] of the limiting curve and in the limit nQ. become dense
on that segment.

It is again curious that the amplitude corresponding to the subdomi-
nant eigenvalue vanishes at the Beraha number B5=(3+`5)/2 and its
conjugate Bg

5=(3−`5)/2.

6.4. Lx=5P

The transfer matrix is again two-dimensional. In the basis
P={1, d13+d24+d35+d41+d52} it can be written as

T(5P)=

1q
5−10q4+45q3−115q2+169q−116 5(q4−9q3+34q2−63q+47)

q2−6q+10 q3−9q2+29q−32
2 ,

(6.7)
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and the partition function is equal to

Z(5P×mF)=q(q−1)(q−2) 1
q2−2q+2

5(q−1)
2T ·T(5P)m−1 ·1

1

0
2 . (6.8)

The eigenvalues of the transfer matrix T(5P) and their corresponding
amplitudes are given by (4.13)/(4.14)/(4.20) with36

36 Our results are in agreement with those of ref. 32, eqns. (3.8)–(3.10).

P1(q)=q5−10q4+46q3−124q2+198q−148 (6.9a)

P2(q)=q10−20q9+188q8−1092q7+4356q6−12596q5+27196q4

−44212q3+52708q2−41760q+16456 (6.9b)

P3(q)=q(q−1)(q−2)(q7−12q6+66q5−214q4+450q3

−646q2+608q−268) (6.9c)

P4(q)=5q2(q−1)2 (q−2)2 (q2−3q+1)(q−3)(q2−6q+10)2 (6.9d)

The limiting curve contains five pieces, and it crosses the real axis at
q0 % 2.6916837012.37 There are ten endpoints given by the zeros of the

37 This curve is also depicted in ref. 32, Fig. 2.

resultant at t=0 [=−P2(q)]:

q % 0.1650212134±1.9190897717 i (6.10a)

q % 2.0895893895±1.9436539472 i (6.10b)

q % 2.5034648023±2.0851731765 i (6.10c)

q % 2.5680063227±0.4886738235 i (6.10d)

q % 2.6739182721±0.5983324603 i (6.10e)

The zeros of the amplitudes can be found by solving P4(q)=0. There
are trivial zeros at q=0, 1, 2, where both amplitudes vanish simulta-
neously; all of them lie in the region where the eigenvalue l− is dominant.
Thenon-trivialzerosofP4 areq=3,3±i(eachofthemdouble)and(3± `5)/2.
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Only for q=(3+`5)/2=B5 does the amplitude corresponding to the
leading eigenvalue vanish. So the isolated zeros are expected to converge
when the strip length goes to infinity to the first four Beraha numbers
B2, ..., B5=0, 1, 2, (3+`5)/2.

From Table 4 we see that the third real zero is trivially equal to B4=2
(a cylindrical square lattice of odd width is not 2-colorable). The first non-
trivial zero converges rapidly to the Beraha number B5, while the last real
zero seems to be converging slowly (at a roughly 1/n rate) to the value
q0 % 2.6916837012 where the limiting curve B crosses the real axis.

The next Beraha number B6=3 is also a zero of P4(q), but this corre-
sponds to the vanishing of the subdominant amplitude.

6.5. Lx=6P

The transfer matrix is five-dimensional; it can be found in the
Mathematica file transfer1.m.

The limiting curve B (see Fig. 15) has three connected components.
Two of them form a pair of mutually conjugate arcs, which extend for the

Fig. 15. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 6P×30F (squares), 6P×60F (circles) and 6P×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.
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Fig. 16. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 6P×.F. (a) Region around the double point q % 2.6110857. At this double point we
have t % 0.0053. (b) Region around the T point at q % 2.650+1.240 i. At this T point we have
t % (0.392, 1.224, 0.562) and h % (0.748, 1.771, 1.024). (c) The same as in (b), but we show the
dominant (solid black line) and subdominant (dashed grey line) crossing curves. (d) Blow-up
of region around the quasi-cusp at q % 2.568+1.398 i.
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first time into the half-plane Re q < 0. The third component is self-
conjugate and crosses the real axis with a double point at q %
2.6110856839, from which there emerges a small horizontal segment
running from 2.6089429411 « q « 2.6132283584 (see Fig. 16a for detail).
Note that this crossing lies slightly below the Beraha number B5=
(3+`5)/2 % 2.6180339887. This component also has T points at
q % 2.650±1.240 i (see Fig. 16b,c for detail).

Inspection of Fig. 15 might lead one to think that the self-conjugate
component also exhibits a cusp at q % 2.568±1.395 i: indeed, the curve B
seems to have a discontinuous derivative there. Moreover, there is no
nearby dominant endpoint (which rules out the alternative hypothesis of a
T point from which there emerges a very short curve terminating at a
dominant endpoint); and anyway the value of t is also reasonably contin-
uous around the alleged cusp (providing further evidence against the idea
of a T point). However, by zooming on this region we can see that it is
actually a single smooth curve (see Fig. 16b,c,d). What happens is that
there is a subdominant endpoint very close to this curve (the subdominant
curve is shown with dashed grey lines); moreover, the subdominant eigen-
values are very close in modulus to the dominant ones. In particular, at the
subdominant endpoint we have

ldom=10.4372144110 exp(−0.9719979634 i) (6.11a)

lsub=10.4046337888 exp(−2.8500677201 i) (6.11b)

Near the subdominant endpoint, the two subdominant eigenvalues are very
rapidly changing (as they have a square-root branch point), so that their
crossing in modulus with the dominant eigenvalue occurs on a curve B of
rapidly changing slope.

There are ten endpoints:

q % −0.1318891429±1.7132242811 i (6.12a)

q % 1.9257517021±2.2876287010 i (6.12b)

q % 2.0571168133±2.3885607275 i (6.12c)

q % 2.6089429411 (6.12d)

q % 2.6132283584 (6.12e)

q % 3.1711921718±0.8639071723 i (6.12f)
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By Lemma 2.2, the points where at least one amplitude vanishes are
given by the condition det D(q)=0. This determinant can be written as

det D(q)=q5(q−1)5 (q−2)4 (q2−3q+1)2 (q−3)3 (q3−5q2+6q−1) P(q)2

(6.13)

where P(q) is a polynomial of degree 28 with integer coefficients that
we report in the file transfer1.m. We find two trivial zeros q=0, 1
where all the amplitudes vanish simultaneously. There are three points
where a dominant amplitude vanishes: q=2 and q % 2.4813444277±
1.7147613188 i (shown with a × in Fig. 15). The complex-conjugate pair of
isolated limiting zeros lies extremely near, but not on, the limiting curve B
(namely, about 0.006 to the left of B). The rate of convergence to the
complex isolated limiting points is roughly 1/n instead of the expected
exponential rate. This may be due to the fact that they are extremely close
to the limiting curve B.

From Table 4 we see that the first non-trivial real zero converges
rapidly to the Beraha number B4=2, while the second non-trivial zero
appears to be converging slowly (at a rate somewhere between 1/n and
1/n2) to the real endpoint q % 2.6089429411. We expect that there will be
further real zeros (whose number increases with n) that tend to the segment
[2.6089429411..., 2.6132283584...] of the limiting curve and in the limit
nQ. become dense on that segment.

It is curious that (6.13) vanishes also at the Beraha numbers
B5=(3+`5)/2, B6=3 and B7 % 3.246979603717 and their conjugates,
even though all of these correspond to the vanishing of a subdominant
amplitude.

6.6. Lx=7P

The transfer matrix is six-dimensional; it can be found in the
Mathematica file transfer1.m.

The limiting curve B (see Fig. 17) has seven connected components.
One of them is a self-conjugate arc that crosses the real axis at q0 %

2.7883775115, which lies for the first time above the Beraha number B5=
(3+`5)/2 % 2.6180339887; this arc has endpoints at q % 2.7618995071±
0.4693560083 i. The other six components form three pairs of mutually
conjugate components. The first pair are arcs running from q %
−0.2962497164±1.5256077564 i to q % 1.6542262925±2.4866235231 i,
and thus have support on Re q < 0. The second pair are also arcs,
running from q % 1.6947007027±2.5327609879 i to q % 2.6589962013±
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Fig. 17. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 7P×35F (squares), 7P×70F (circles) and 7P×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.

1.5245516751 i. The last pair of components has endpoints at q %
2.7275004011±1.4172937300 i, q % 2.7873170476±0.4754613769 i and
q % 2.8390155832±1.3872842928 i, and T points at q % 2.737±1.405 i (see
Fig. 18a,b); it is separated from the self-conjugate arc by a very small gap
(see Fig. 18c).

There are 16 endpoints:

q % −0.2962497164±1.5256077564 i (6.14a)

q % 1.6542262925±2.4866235231 i (6.14b)

q % 1.6947007027±2.5327609879 i (6.14c)

q % 2.6589962013±1.5245516751 i (6.14d)

q % 2.7275004011±1.4172937300 i (6.14e)

q % 2.7618995071±0.4693560083 i (6.14f)
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Fig. 18. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 7P×.F. (a) Region around the T point at q % 2.737+1.405 i and the gap between
q % 2.6590+1.525 i and q % 2.7275+1.4173 i. (b) Detail of the region around the T point. At
this point we have t % (0.125, 0.581, 0.425) and h % (0.248, 1.053, 0.804). (c) Region around
the gap between the points q % 2.7619+0.46936 i and q % 2.7873+0.47546 i.

q % 2.7873170476±0.4754613769 i (6.14g)

q % 2.8390155832±1.3872842928 i (6.14h)

By Lemma 2.2, the points where at least one amplitude vanishes are
given by the condition det D(q)=0. This determinant can be written as
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det D(q)=q6(q−1)6 (q−2)6 (q2−3q+1)4 (q−3)3 (q3−5q2+6q−1)

×(q2−4q+2) P(q)2 (6.15)

where P(q) is a polynomial of degree 56 with integer coefficients. This
polynomial can be found in the file transfer1.m. The trivial isolated
limiting points are q=0, 1, 2, where all the amplitudes vanish simulta-
neously. The non-trivial isolated limiting points are the Beraha number
B5=(3+`5)/2 and the pair of complex-conjugate roots q % 2.1027473746
±2.2083820861 i. This is the first square-lattice strip with cylindrical b.c.
for which B5 appears as an isolated limiting point.

There is trivially a real zero at q=2 (because the strip width is odd).
The first non-trivial real zero (see Table 4) converges rapidly to the Beraha
number B5=(3+`5)/2, while the next real zero appears to converge
slowly (at a roughly 1/n rate) to the value q0 % 2.7883775115 where the
limiting curve B crosses the real axis. The rate of convergence to the
complex isolated limiting points q % 2.1027473746±2.2083820861 i is very
fast and is compatible with an exponential rate.

It is curious that (6.15) vanishes also at the Beraha numbers B6=3,
B7 % 3.246979603717 and B8=2+`2 and their conjugates, even though
all of these correspond to the vanishing of a subdominant amplitude.

6.7. Lx=8P

The transfer matrix is 14-dimensional; it can be found in the
Mathematica file transfer1.m.

The limiting curve B (see Fig. 19) has six connected components,
which define three pairs of mutually conjugate components. The first pair
is defined by arcs running from q % −0.3908638747±1.3698634697 i to
q % 1.3863697070±2.5801346584 i, which thus have support on Re q < 0.
A small gap (see Fig. 20a) separates these components from the second
pair, which consists of arcs running from q % 1.3989312933±
2.5988401222 i to q % 2.5297861557±1.8426263238 i. The last pair has
endpoints at q % 2.5810431815±1.8106192070 i, q % 2.7515311636±
0.0025313231 i, q % 2.7812812528±1.0876657311 i and q % 3.2111321566
±0.6498638896 i, and T points at q % 2.801±1.043 i and q % 2.783±
1.088 i. Note that the T points at q % 2.783±1.088 i might look like cusps
if we fail to use enough magnification (see Fig. 20b). But if we magnify the
region sufficiently, we observe that it is indeed an ordinary T point (see
Fig. 20c). Note also that B does not cross the real axis at any point; rather,
there is a very tiny gap between q % 2.7515311636±0.0025313231 i (see
Fig. 20d).
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Fig. 19. Zeros of the partition function of the q-state Potts antiferromagnet on a square lat-
tices 8P×40F (squares), 8P×80F (circles) and 8P×.F (solid line). The isolated limiting zeros
are depicted by a × . The limiting curve was computed using the resultant method.

There are 16 endpoints:

q % −0.3908638747±1.3698634697 i (6.16a)

q % 1.3863697070±2.5801346584 i (6.16b)

q % 1.3989312933±2.5988401222 i (6.16c)

q % 2.5297861557±1.8426263238 i (6.16d)

q % 2.5810431815±1.8106192070 i (6.16e)

q % 2.7515311636±0.0025313231 i (6.16f)

q % 2.7812812528±1.0876657311 i (6.16g)

q % 3.2111321566±0.6498638896 i (6.16h)

By Lemma 2.2, the points where at least one amplitude vanishes are
given by the condition det D(q)=0. This determinant is given by

det D(q)=q14(q−1)20 (q−2)13 (q2−3q+q2)11 (q−3)18 (q3−5q2+6q−1)4

×(q2−4q+2)(q3−6q2+9q−1) P(q)2 (6.17)
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Fig. 20. Detail of the limiting curves B for the q-state Potts antiferromagnet on a square
lattice 8P×.F. (a) Region around the gap at q % 1.39+2.59 i. (b) Region around the T points
q % 2.783+1.088 i and q % 2.801+1.043 i. At the former T point we have t % (1.074,
0.0184, 1.115) and h % (1.642, 0.037, 1.679); at the latter we have t % (0.119, 0.813, 1.031) and
h % (0.237, 1.365, 1.601). (c) Detail of the T point at q % 2.783+1.088 i. (d) Region around
the tiny gap at q % 2.7515.

where P(q) is a polynomial of degree 396 with integer coefficients (see file
transfer1.m). The trivial isolated limiting points are q=0, 1: at these
points all the amplitudes vanish simultaneously. The non-trivial isolated
limiting points are the Beraha numbers B4=2 and B5=(3+`5)/2 and
the complex-conjugate pairs q % 1.6836371202±2.4533856271 i and q %
2.6775096551±1.2084144891 i (see Fig. 19).
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The first non-trivial real zero converges rapidly to the Beraha number
B4=2, and the next real zero converges rapidly to the Beraha number
B5=(3+`5)/2 (see Table 4). The convergence to the complex isolated
limiting points q % 1.6836371202±2.4533856271 i and q % 2.6775096551
±1.2084144891 i is also very fast and is compatible with an exponential
rate.

It is curious that (6.17) vanishes also at the Beraha numbers B6=3,
B7 % 3.246979603717, B8=2+`2 and B9 % 3.532088886238 and their
conjugates, even though all of these correspond to the vanishing of a sub-
dominant amplitude.

7. DISCUSSION AND OPEN QUESTIONS

7.1. Behavior of Dominant-Eigenvalue-Crossing Curves B

In this paper we have computed the chromatic polynomials (= zero-
temperature antiferromagnetic Potts-model partition functions) PG(q) and
their zeros for square-lattice strips of width 2 [ Lx [ 8 and arbitrary length
Ly with free and cylindrical boundary conditions. In particular, we have
extracted the limiting curves B of partition-function zeros when the length
Ly goes to infinity at fixed width Lx. By studying the finite-width limiting
curves and their behavior as we increase the width Lx, we hope to shed
light on the thermodynamic limit Lx, Ly Q..

In Table 5 we summarize the main properties of the limiting curves B
(and of the isolated limiting points) for all the lattices studied in the pre-
vious sections. Note the identity

endpoints=(2× components)+(2×double points)+(T points)

−(2× enclosed regions), (7.1)

which can be derived by simple topological/graph-theoretic arguments.
Our first conclusion is that the limiting curves become in general more

complicated as the strip width Lx grows. In particular, the number of con-
nected components, the number of endpoints, and the number of T points
all tend to increase with the width Lx. (Note that our counts for Lx=7F, 8F

are only lower bounds on the true values.) Moreover, the size of the gaps
between connected components, and the lengths of the protruding arcs
associated to some of the T points, both seem to decrease with the strip
width Lx. The approach to the thermodynamic limit thus appears to be
rather complicated.

A second point deals with the existence or not of enclosed regions.
Shrock (ref. 28, Section III, point 3) conjectured that for families of graphs
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Table 5. Summary of Qualitative Results for the Eigenvalue-Crossing Curves B and

for the Isolated Limiting Points of Zerosa

Eigenvalue-Crossing Curves B Isolated Points

Lattice # C # E # T # D # ER min Re q q0 max Re q # RI # CI

2F 0 0 0 0 0 2 0
3F 3 6 0 0 0 0.586570 2 2.5 2 0
4F 3 10 2 1 0 0.325474 [2.228359, 2.301416] 2.667426 3 0
5F 5 14 4 0 0 0.170897 2.428438 2.769205 3 0
6F 5 14 6 1 2 0.063142 [2.528647, 2.537098] 2.837338 3 2
7F 7† 14† 4† 0† 2† −0.044443 2.606248 2.886041 3† 2†

8F 6† 14† 2† 0† 0† −0.130642 2.660260±0.001257 i* 2.921658 4† 2†

3P 0 0 0 0 0 3 0
4P 3 8 0 1 0 0.709803 [2.253370, 2.351688] 2.995331 3 0
5P 5 10 0 0 0 0.165021 2.691684 2.691684 4 0
6P 3 10 2 1 0 −0.131889 [2.608943, 2.613228] 3.171192 3 1
7P 7 16 2 0 0 −0.296250 2.788378 2.839016 4 1
8P 6 16 4 0 0 −0.390864 2.751531±0.002531 i* 3.211132 4 2

a For each square-lattice strip considered in this paper, we give the number of connected
components of B (# C), the number of endpoints (# E), the number of T points (# T), the
number of double points (# D), and the number of enclosed regions (# ER); we give the
minimum value of Re q on B, the value(s) q0 where B intersects the real axis (* denotes
an almost-crossing), and the maximum value of Re q on B. We also report the number of
real isolated limiting points of zeros (# RI) [which are always successive Beraha numbers
B2, B3, ...] and the number of complex-conjugate pairs of isolated limiting points (# CI).
The symbol † indicates uncertain results.

with a well-defined lattice structure, a sufficient condition for B to separate
the q-plane into two or more regions is that the graphs contain at least one
‘‘global circuit’’, defined as a route following a lattice direction which has
the topology of S1 and a length that goes to infinity as Ly Q.. (For strip
graphs, this condition is equivalent to having periodic boundary conditions
in the longitudinal direction.) Our results for Lx=6F, 7F show that this
condition, whether or not it is in fact sufficient for the existence of enclosed
regions, is in any case not necessary: enclosed regions can arise also with
free longitudinal b.c.38 In both these cases, the enclosed regions are small

38 For earlier examples showing that enclosed regions can arise also with free longitudinal b.c.,
see ref. 19, Figs. 2(b), 3(b) and 4(a,b).

bulb-like regions located at the end of one of the components of B.
Enclosed regions do, however, seem to be atypical for square-lattice strips
with free longitudinal b.c.

A third point concerns the existence of chromatic zeros with Re q < 0,
and more specifically of limiting curves B that intersect the half-plane
Re q < 0. In 1980, Farrell (138) conjectured, based on computations with
small graphs, that all chromatic roots have Re q \ 0. We now know that
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this conjecture is false; (139) indeed, there are families of graphs whose
chromatic roots, taken together, are dense in the whole complex q-plane. (40)

Nevertheless, chromatic roots do seem to have a tendency to avoid the left
half-plane, and it would be interesting to know why. Our computations
show that for Lx=7F, 8F and Lx=6P, 7P, 8P, the locus B does intersect the
half-plane Re q < 0. Indeed, we conjecture that this happens for square-
lattice strips of all widths Lx \ 7 (free b.c.) or Lx \ 6 (cylindrical b.c.).

Although the limiting curves get more complicated as the strip width
Lx grows, they do exhibit some regularities, as can be seen in Table 5 and
Figs. 21 and 22. In Fig. 21 we superpose the limiting curves for all the
square-lattice strips with free boundary conditions. In the leftmost part of
the plot (Re q « 2), we see that the arcs behave monotonically: as the width
Lx increases, the corresponding arc moves outwards. In particular,
min Re q decreases monotonically with the width Lx (see Table 5). A
similar behavior is observed in the right part of the plot for Lx \ 4: the
limiting curves have similar shapes and they move monotonically to the
right as Lx grows. In particular, the point q0 where B crosses the real axis
increases monotonically with the strip width, as does max Re q (see again
Table 5). In general, the shapes of the limiting curves look roughly similar
to those obtained by Baxter (ref. 56, Figs. 5 and 6) for the triangular
lattice. We conjecture that the rightmost endpoints of B, which lie at
q % 2.92±0.56 i for Lx=8, will tend (slowly) to close up at the critical
value qc=3 as Lx Q.. We also conjecture, in analogy with the triangular
lattice, that the values q0 will tend to a number strictly less than 3, prob-
ably somewhere around 2.9.* However, our strip widths are still too small

* See note added in proof on p. 615.

to give unambiguous evidence for or against these conjectures.
In Fig. 22 we show the limiting curves for all the square-lattice strips

with cylindrical boundary conditions. In the leftmost part of the plot
(Re q M 2), the behavior of the arcs is again monotonic in the strip width;
in particular, min Re q is again a decreasing function of Lx (see Table 5).
However, the qualitative behavior of the limiting curves on the right side of
the plot (Re q N 2.3) is clearly not monotonic: there is a notorious differ-
ence between strips with even width and those with odd width. This differ-
ence is, in fact, to be expected: with periodic transverse boundary condi-
tions, odd widths are in some sense ‘‘unnatural’’ as they introduce frustra-
tion in the antiferromagnetic Ising system (i.e. they make the chromatic
number 3 rather than 2, thereby forcing a chromatic zero at q=2). It is
curious that the difference between even and odd widths is significant only
on the rightmost part of the limiting curve (namely, the part nearest q=2
and q=3). In any case, if we consider the even and odd subsequences
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Fig. 21. Limiting curves for the square-lattice strips LF×.F with 3 [ L [ 8.

Fig. 22. Limiting curves for the square-lattice strips LP×.F with 4 [ L [ 8.
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separately, then q0 and max Re q are again monotonically increasing func-
tions of Lx (see Table 5). Moreover, the limiting curves for the square-
lattice strips with even width and cylindrical boundary conditions have,
apart from the case Lx=4, a qualitative shape in agreement with that for
free boundary conditions.

Finally, let us compare the limiting curves for free and cylindrical
boundary conditions (Figs. 21 and 22). If we focus on the leftmost part of
the plots, we see that both sets of curves tend to larger values of |Im q| as
Lx grows, but the curves for cylindrical boundary conditions reach large
values of |Im q| much faster. Likewise, on the rightmost part of the plots,
both sets of curves tend to larger values of Re q as Lx grows (modulo the
even-odd oscillation for cylindrical b.c.), but the curves for cylindrical
boundary conditions do so somewhat faster. This suggests that the ther-
modynamic limit is achieved faster with cylindrical boundary conditions
than with free boundary conditions.

Let us conclude by mentioning briefly the work of Bakaev and
Kabanovich, (140) who computed the large-q series for the infinite-volume
limiting chromatic polynomial through order z36 [where z=1/(q−1)],
using the finite-lattice method. Tony Guttmann (private communication)
has kindly analyzed their series using differential approximants. He finds
that the nearest singularity to z=0 lies at z % (0.155±0.005)±
(0.37±0.03)i, corresponding to q % (1.96±0.15)±(2.30±0.15)i. Curiously
enough, this corresponds quite closely to a gap (pair of nearby endpoints) for
width 6P (see Section 6.5), where the limiting chromatic polynomial is indeed
singular. But this may be a coincidence, as there is no corresponding end-
point for width 8P, and the nearby endpoints for strips with free b.c. do not
seem to be converging to this value.40 The large-q series shows no hint of

40 For 5F there is a gap around z % 0.20±0.41 i, but as the width increases, the real part
decreases beyond the predicted singularity (0.13 for 6F, 0.08 for 7F, 0.04 for 8F).

singularity at qc=3, which is very likely a weak essential singularity.

7.2. Behavior of Amplitudes and the Beraha Conjecture

For all the lattices we studied (up to width L=8), we observed
empirically that there is at least one vanishing amplitude ai(q) at each of
the Beraha numbers up to BL+1. It is reasonable to conjecture that this
holds for all L:

Conjecture 7.1. For a square-lattice strip of width L with free or
cylindrical boundary conditions, at each Beraha number q=B2, ..., BL+1

there is at least one vanishing amplitude ai(q). That is, det D(q)=0 for
q=B2, ..., BL+1.
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For all the cases we studied except 7F and 8F [where we were unable
to compute an explicit expression for det D(q)], we also verified that none
of the roots of det D(q) correspond to Beraha numbers beyond BL+1. We
conjecture that this holds for all L:

Conjecture 7.2. For a square-lattice strip of width L with either
free or cylindrical boundary conditions, det D(q) ] 0 for all q=Bk with
k > L+1. [We assume, of course, that the chromatic polynomial is written
in such a way that there are no identically vanishing amplitudes.]

In some cases we found real roots of det D(q) that are very close to Beraha
numbers: for instance, the strip with L=5F (resp. L=6F) has a zero of
det D(q) very close to B7 (resp. B9 and B29). Moreover, det D(q) does in
general have many real roots with q > BL+1 (and indeed with q > 4), as well
as real roots with q < 0.

We can strengthen the preceding conjecture to assert that det D(q) is
strictly positive at the Beraha numbers beyond BL+1:

Conjecture 7.3. For a square-lattice strip of width L with either
free or cylindrical boundary conditions, det D(q) > 0 for all q=Bk with
k > L+1.

We have verified this conjecture for all square-lattice strips with L [ 7F and
L [ 8P up to k=50. Furthermore, the function f(k)=det D(Bk) seems to
be a monotonically increasing function of k for k > L+1.

Conjecture 7.1 asserts that at each of the Beraha numbers B2, ..., BL+1

there is at least one vanishing amplitude ai(q), but it says nothing about
whether the vanishing amplitude belongs to a dominant or a subdominant
eigenvalue. Basing ourselves on a suggestion of Baxter (ref. 56, p. 5255), we
conjectured that at each Beraha number q=B2, ..., BL+1, the amplitude
ag(q) corresponding to the eigenvalue lg(q) vanishes: here lg(q) is the
eigenvalue that is dominant at small real q (e.g. at q=1), analytically con-
tinued up the real axis (or, if there is a branch point on the real axis, then
just above or below the real axis). [Note that lg(q) remains dominant until
the path of analytic continuation crosses B; after that, it becomes in
general subdominant.] We tested this conjecture numerically as follows:
Choose a path in the complex q-plane starting at q=1 and proceeding to
the right just above or below the real axis (note that for 8F and 8P we must
keep |Im q| M 0.001 in order to avoid going around an endpoint).41 Subdi-

41 Any two such paths give the same analytic continuation provided that there are no end-
points in the region between them.

vide this path into very small steps, and at each point compute the eigen-
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values of the transfer matrix, following lg(q) ‘‘by continuity’’ (that is,
starting with lg(1), choose at each q value the eigenvalue that is closest to
the one chosen at the preceding q value). Then, when the Beraha number
Bk is reached, diagonalize the transfer matrix, rotate the left and right
vectors uF(q) and vF(q), and test whether the amplitude ag(q) vanishes.

We were unable to carry out this computation for L=7F and 8F: in
the former case, because of CPU-time limitations, and in the latter case,
because of loss of numerical precision in diagonalizing the matrices (even
when we used 1000-digit arithmetic). In all but one of the other cases
(namely, for L [ 6F and L [ 7P), we found that ag(q) does indeed vanish
(sometimes along with other amplitudes) at all the Beraha numbers up to
BL+1. The strips with L=8F and 8P are, however, a different case, as the
limiting curve B does not cross the real axis. If we follow a path from q=1
to q=+. along the real axis, we do not cross B; so lg(q) stays dominant
everywhere on the real axis (and in particular at the Beraha numbers
B6, ..., B9). Therefore, if ag(q) were to vanish at B6, ..., B9, as our conjec-
ture asserts, then those Beraha numbers would be isolated limiting points.
But Figs. 11 and 19 show clearly that they are not! So our conjecture must
be false for the strips 8F and 8P. (Indeed, for 8P we confirmed explicitly that
ag vanishes at B2, ..., B5 but not at B6, ..., B9; rather, it is a subdominant
amplitude that vanishes at the latter points.) More generally, we can expect
our conjecture to be false whenever B does not cross the real axis.42 We are

42 For the same reason, if in the cases L [ 6F and L [ 7P we analytically continue the domi-
nant eigenvalue at q=1 (namely, lg) to the region q > q0(L) by following a path that does
not cross B—e.g., by going through one of the gaps in B—then the analytic continuation of
lg will remain dominant everywhere. But then, the analytic continuation of the amplitude ag
will not vanish at any of the Beraha numbers to the right of B, since we know that these are
not isolated limiting points. Rather, the analytic continuation of one or more subdominant
amplitudes at q=1 will vanish at those Beraha numbers. We have numerically tested this
behavior of the eigenvalues and amplitudes along paths that do not cross B in the same way
we did for the paths that do cross B.

therefore obliged to modify our conjecture as follows:

Conjecture 7.4. For a square-lattice strip of width L with free or
cylindrical boundary conditions, let lg(q) be the eigenvalue that is domi-
nant at small real q (e.g. at q=1), analytically continued up the real axis
(or, if there is a branch point on the real axis, then just above or below the
real axis). Then, provided that the limiting curve B crosses the real axis, at
each Beraha number q=B2, ..., BL+1, the corresponding amplitude ag(q)
vanishes. [Other amplitudes may vanish as well.]

All our numerical evidence is consistent with Conjecture 7.4.
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Remark. In the case L=8P, suppose that we follow a path that does
cross the limiting curve B slightly above the endpoint at q % 2.7515+
0.0025 i. Then the eigenvalue lg will cease to be dominant to the right of
B; and we find that the corresponding amplitude ag does vanish at all the
Beraha numbers B6, ..., B9! So a variant of Conjecture 7.4 applies in this
case as well. But we are unable to see what general principle might be at
work.

Conjecture 7.4 ‘‘explains’’ why the first few Beraha numbers—but only
the first few—arise as limiting points of chromatic roots, at least in those
cases where the limiting curve B crosses the real axis at some point q0(L).
Indeed, those Beraha numbers that satisfy both q [ BL+1 and q < q0(L)
correspond to the vanishing of the dominant amplitude, hence are isolated
limiting points of chromatic roots. By contrast, the remaining Beraha
numbers correspond either to the vanishing of a subdominant amplitude
(in case q0(L) < q [ BL+1) or do not correspond to the vanishing of any
amplitude (in case q > BL+1, assuming the validity of Conjecture 7.2).43 As

43 In case q0(L) is itself a Beraha number [ BL+1 (as happens e.g. for L=3F), it corresponds
to case (b) of the Beraha–Kahane–Weiss theorem, hence to a non-isolated limiting point.
More generally, if B intersects the real axis in an interval [q0, − (L), q0,+(L)], then all the
points in this interval correspond to non-isolated limiting points, even if a dominant ampli-
tude should happen to vanish.

the strip width L grows, the limiting curve B moves to the right and ‘‘un-
covers’’ more Beraha numbers; q0(L) presumably tends to a limiting value
q0(.). For the triangular lattice, Baxter’s (56) analytic solution predicts that
q0(.) % 3.81967, which lies between B14 and B15 and in particular lies
strictly below the critical point qc=4. For the square lattice, an analytic
solution is lacking, but our results in Table 5 suggest (assuming monotoni-
city in L) that q0(.) > 2.788, and analogy with the triangular lattice
suggests that q0(.) < qc=3. It follows that q0(.) lies between B5 and B6,
so that the first four Beraha numbers B2, ..., B5—but only these—will be
isolated limiting points.

7.3. Upper Zero-Free Interval for Bipartite Planar Graphs

Let G be a loopless planar graph. Then it is not hard to prove that
PG(q) > 0 for all integers q \ 5;44 moreover, one of the most famous

44 This is the Five-Color Theorem, which goes back to Heawood in 1890. For a proof, see e.g.
ref. 141, Theorem V.8, pp. 154–155; or for an elegant alternate proof of an even stronger
result, see ref. 141, Theorem V.12, pp. 161–163.

theorems of graph theory—the Four-Color Theorem (142–146)—asserts that
PG(q) > 0 holds in fact for all integers q \ 4.
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It is natural to ask whether these results can be extended from integer
q to real q. The answer is yes, at least in part: Birkhoff and Lewis (102)

proved in 1946 that if G is a loopless planar graph, then PG(q) > 0 for all
real numbers q \ 5.45 Furthermore, they conjectured that PG(q) > 0 also for

45 See also Woodall, ref. 103, Theorem 1, and Thomassen, ref. 104, Theorem 3.1 ff., for alter-
nate proofs of a more general result.

4 < q < 5; and while no one has yet found a proof, no one has found a
counterexample either, so it seems plausible (in the light of the Four-Color
Theorem) that the conjecture is true.

Now some planar graphs can be colored with three or even two colors;
their chromatic polynomials PG(q) are strictly positive for integers q \ 3 or
q \ 2, respectively. Can these bounds can be extended to real q? That is, if
G is a k-colorable planar graph, do we have PG(q) > 0 for all real q \ k?
Woodall (ref. 103, p. 142), conjectured that the answer is yes. For k=4,
this is the conjecture of Birkhoff and Lewis mentioned above. For k=3,
however, Thomassen (ref. 104, pp. 505–506) has shown that Woodall’s
conjecture is false: there exist 3-colorable planar graphs with real chromatic
roots greater than 3.46 We can now show that Woodall’s conjecture is false

46 Start with a graph K and a real number q0 for which PK(q0) < 0. Then Thomassen (ref. 104,
Theorem 3.9) constructs a 2-degenerate (and hence 3-colorable, ref. 141, Theorem V.1,
p. 148) graph K(m) such that PK(m)(q0) < 0; moreover, K(m) can be chosen to be planar if K
is. Since there exist planar graphs K with real chromatic roots q1 greater than 3, and since
the 3-colorability of K(m) [or alternatively the Four-Color Theorem] implies that
PK(m)(4) > 0, we can take q0=q1− E and conclude that K(m) has a chromatic root in the
interval q0 < q < 4. Thus, the upper zero-free interval for 3-colorable planar graphs is the
same as that for all planar graphs.

In presenting this result, Thomassen (ref. 104, p. 506) further asserted that there exist
planar graphs K with real chromatic roots arbitrarily close to 4; but this assertion
apparently arises from a misunderstanding of the Beraha–Kahane (38) theorem that 4P×nF

triangular lattices have complex chromatic roots arbitarily close to 4. In fact we do not
know of any planar graphs with real chromatic roots arbitarily close to 4. In our study of
triangular-lattice strips (88) we have thus far found chromatic roots up to % 3.51; and
Baxter’s (56) result q0(.) % 3.81967 suggests that sufficiently wide and long pieces of the
triangular lattice will have real chromatic roots up to at least B14 % 3.801938. But we do not
know of any planar graphs with chromatic roots in the interval [B14,.).

We thank Carsten Thomassen and Douglas Woodall for correspondence concerning
these questions.

also for k=2: there exist 2-colorable (i.e. bipartite) planar graphs with real
chromatic roots greater than 2. For example, the 4P×6F square lattice has
chromatic roots at q % 2.009978 and q % 2.168344; and the same pattern
persists for larger lattices, with both free and periodic transverse boundary
conditions (see Tables 3 and 4). Indeed, for the cases 8F×nF and 8P×nF,
we see numerically (Tables 3 and 4) that there are real chromatic roots
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tending to B5=(3+`5)/2 % 2.618034 from below as nQ..47 This leads

47 The 5P×nF and 7P×nF lattices have chromatic roots larger than B5, but graphs of odd strip
width with periodic b.c. are not bipartite.

us to modify Woodall’s conjecture as follows:

Conjecture 7.5. Let G be a bipartite planar graph. Then PG(q) > 0
for real q \ B5=(3+`5)/2.

Let us make two remarks:

1) Planarity here is crucial, as non-planar bipartite graphs can have
arbitrarily large real chromatic roots. Indeed, the complete bipartite graphs
Kn1, n2

, in the limit n2 Q. with n1 fixed, have real chromatic roots arbi-
trarily close to all the integers from 2 through Nn1/2M (ref. 105, Theorem 8).

2) Initially we conjectured that not only PG(q) but also all its deriva-
tives are positive for q \ B5. But this turns out to be false: for example, the
8P×16F lattice has P'G(B5) < 0; and the 8P×24F lattice has P −G(q) < 0 for
2.638337 M q M 2.687058.

7.4. Prospects for Future Work

One very interesting extension of this work is the computation of the
chromatic polynomials for strips with periodic boundary conditions in the
longitudinal direction. (89) Such computations have been performed for strip
widths m=2, 3 by ad hoc methods, (110, 34, 35, 23, 24, 26, 27, 29) but a systematic
transfer-matrix formalism has heretofore been lacking. In fact, the needed
formalism can be obtained by a slight extension of the methods explained
in this paper. Suppose we want to obtain the chromatic polynomial for a
square-lattice strip mF/P×nP (i.e., either free or periodic transverse b.c., and
periodic longitudinal b.c.). The idea is simple: instead of just keeping track
of the connectivities among the m sites on the current top row, we keep
track of the connectivities among the 2m sites on the current top row and
the bottom row. Let us call these sites 1, 2, ..., m and 1Œ, 2Œ, ..., mŒ, respec-
tively. Initially the top and bottom rows are identical. We then enlarge the
lattice one site at a time, exactly as in Section 3.2; the join and detach
operations act on the sites of the top row, with those of the bottom row
simply ‘‘going along for the ride’’. At the end, when we have obtained a
lattice with n+1 rows, we identify the top and bottom rows. The partition
function for periodic longitudinal boundary conditions can thus be written
as

ZGper
n
(q, {ve})=ûT(VH)n vequiv, (7.2)
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where ‘‘equiv’’ denotes the partition { {1, 1Œ}, {2, 2Œ}, ... {m, mŒ} } and ûT is
defined by

ûT=uTJ11ŒJ22Œ · · ·JmmŒ (7.3)

where uT is defined in (3.41).
In future work in collaboration with Jesper-Lykke Jacobsen, we will

extend the results of the present paper to wider strip widths, (87) to the
triangular lattice, (88) to periodic boundary conditions in the longitudinal
direction, (89) and to nonzero temperature. (66)
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